Sujet : Re: x²+4x+5=0
De : jp (at) *nospam* python.invalid (Python)
Groupes : sci.mathDate : 24. Jan 2025, 17:53:05
Autres entêtes
Organisation : Nemoweb
Message-ID : <FLQp7QRPynqSvhUjWTUWnK-M_3w@jntp>
References : 1 2 3 4 5 6
User-Agent : Nemo/1.0
Le 24/01/2025 à 16:48, Richard Hachel a écrit :
Le 24/01/2025 à 14:15, FromTheRafters a écrit :
Richard Hachel wrote :
Le 23/01/2025 à 22:23, Moebius a écrit :
Am 23.01.2025 um 00:58 schrieb sobriquet:
Op 22/01/2025 om 14:48 schreef Richard Hachel:
x²+4x+5=0
>
This equation has no root, and it never will.
>
We can then find two roots of its mirror curve.
>
Let x'=-3 and x"=-1
What is this imaginary mirror curve?
>
It is the curve with equation y=-x²-4x-3
>
Let's look for its roots, and we find x'=-3 and x'=-1
>
These are the imaginary roots of x²-4x+5.
>
Wolfram Alpha tells us there are two roots:
https://www.wolframalpha.com/input?i=solve+x%5E2%2B4x%2B5%3D0
Wolfram Alpha must be wrong! :-P
>
>
>
No, here it is fine. The two imaginary roots are x'=-2-i and x"=-2+i
>
But that is not the question.
Shouldn't imaginary roots be on the y axis?
Ce ne serait plus résoudre les racines de x, mais les racines de y quand y=0, ce qui est absurde. Non, non, il s'agit de trouver les racines de x lorsque y=0.
FromTheRafters was pointing out your misuse of the standard terminology.
if x,y are real numbers, then x + iy is a complex numbers. The term "imaginary" (in French "imaginaire pur") denotes numbers of the form i*y. They are on the "y axis" refers to the representation of C as coordinates in the Euclidean plane.
So "-2 - i" and "-2 + i" are not "imaginary".