Liste des Groupes | Revenir à s math |
On 8/22/2024 8:16 AM, WM wrote:Yes. Nevertheless almost all natural numbers are bewteen ℕᵈᵉᶠ and ω.Le 21/08/2024 à 20:34, Moebius a écrit :ω is an upper.bound of ℕᵈᵉᶠ.Yeah, it's like claiming:>
"There is an end
(to the natural numbers), because at and above omega
there is no natural number.
Of course, but
omega is somewhat ghostly.
Do the natnumbers reach till omega?
Of all upper.bounds of ℕᵈᵉᶠ, the lowest is ω.
Each element of ℕᵈᵉᶠ is not upper.bound of ℕᵈᵉᶠ.Correct.
No upper.bound of ℕᵈᵉᶠ is in ℕᵈᵉᶠ
No.Do the natnumbers reach till omega?Define
the natnumbers reach k ⇔
(∀ᵒʳᵈj≤k:(∃ᵒʳᵈi:j=i∪{i} ⇐ j≠0) ∧ 0<k) ∨ 0=k
k ∈ ω ⇔ the natnumbers reach k
The natnumbers only reach elements of ℕᵈᵉᶠ.
ω, an upper.bound of ℕᵈᵉᶠ, is not.in ℕᵈᵉᶠ.ω - 1 is the greates naturak number.
The natnumbers do not reach ω
Les messages affichés proviennent d'usenet.