Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 28. Dec 2024, 18:31:02
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <b125beff-cb76-4e5a-b8b8-e4c57ff468e9@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla Thunderbird
On 12/28/2024 9:03 AM, WM wrote:
On 27.12.2024 22:00, Jim Burns wrote:
On 12/27/2024 5:14 AM, WM wrote:
They are invariable numbers like ω and ω+1.
>
ω is
the set of (well.ordered) ordinals k such that
#⟦0,k⦆ ≠ #(⟦0,k⦆∪⦃k⦄)
(such that k is finite)
>
That is one interpretation.
Under that interpretation,
#⟦0,ω⦆ = #(⟦0,ω⦆∪⦃ω⦄)
My interpretation is Cantor's original one:
ω is the limit of the sequence 1, 2, 3, ... .
Your ω
ʸᵒᵘʳ( #⟦0,ω⦆ ≠ #(⟦0,ω⦆∪⦃ω⦄)
is infinitely.smaller.than
our ω
ᵒᵘʳ( k < ω ⇔ #⟦0,k⦆ ≠ #(⟦0,k⦆∪⦃k⦄)
A separate fact is that
⟦0,ω⦆ ≠ ⟦0,ω⦆∪⦃ω⦄
>
[0, ω-1] = [0,ω⦆ = ℕ =/= [0, ω]
Yes,
⟦0,ω⦆ = ℕ ≠ ⟦0,ω⟧
However,
⎛ Assume k < ω
⎜ #⟦0,k⦆ ≠ #(⟦0,k⦆∪⦃k⦄)
⎜ #⟦0,k+1⦆ ≠ #(⟦0,k+1⦆∪⦃k+1⦄)
⎝ k+1 < ω
k < ω ⇒ k < k+1 < ω
i < j < ω ⇒ i ≠ ω-1
k < k+1 < ω ⇒ k ≠ ω-1
¬∃⟦0,ω-1⟧