Sujet : Re: How many different unit fractions are lessorequal than all unit fractions? (infinitary)
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 20. Oct 2024, 22:41:24
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <b7179e28-b8a4-424e-9f39-1d18b412e147@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla Thunderbird
On 10/20/2024 4:42 PM, WM wrote:
On 20.10.2024 22:23, Jim Burns wrote:
If n is in the set ℕ≠{1,...,n} of finites,
then 2⋅n is in the set ℕ≠{1,...,n} of finites.
>
When the elements of any set of naturals are multiplied by 2,
∃{1,2,...,n-1,n} ⇔
∃{1,2,...,n-1,n,n+1,...,n+n-1,n+n}
their density is halved,
their reality remains the same,
their extension is doubled.
Therefore
the image contains numbers which are not in the range.
n ∈ ℕ ⇔ ∃{1,2,...,n-1,n}
∃{1,2,...,n-1,n} ⇔ ∃{1,2,...,n-1,n,n+1,...,n+n-1,n+1}
∃{1,2,...,n-1,n,n+1,...,n+n-1,n+1} ⇔ n+n ∈ ℕ
n ∈ ℕ ⇔ n+n ∈ ℕ