Liste des Groupes | Revenir à s math |
Le 24/08/2024 à 00:04, Jim Burns a écrit :On 8/22/2024 8:16 AM, WM wrote:Le 21/08/2024 à 20:34, Moebius a écrit :
That's a definition of ω>>Yeah, it's like claiming:>
"There is an end
(to the natural numbers),
because at and above omega
there is no natural number.
Of course, but
omega is somewhat ghostly.
Do the natnumbers reach till omega?
ω is an upper.bound of ℕᵈᵉᶠ.
Of all upper.bounds of ℕᵈᵉᶠ, the lowest is ω.
Yes.
NeverthelessSomething between ℕᵈᵉᶠ and ω is
almost all natural numbers are bewteen ℕᵈᵉᶠ and ω.
DefineEach element of ℕᵈᵉᶠ is not upper.bound of ℕᵈᵉᶠ.>
No upper.bound of ℕᵈᵉᶠ is in ℕᵈᵉᶠ
Correct.
>Do the natnumbers reach till omega?>
Define
the natnumbers reach k ⇔
(∀ᵒʳᵈj≤k:(∃ᵒʳᵈi:j=i∪{i} ⇐ j≠0) ∧ 0<k) ∨ 0=k
Missing:k ∈ ω ⇔ the natnumbers reach k>
The natnumbers only reach elements of ℕᵈᵉᶠ.
No.
Do the natnumbers reach till omega?
ifω, an upper.bound of ℕᵈᵉᶠ, is not.in ℕᵈᵉᶠ.>
The natnumbers do not reach ω
ω - 1 is the greates naturak number.
Easy to understand by the smallest unit fraction.About that smallest unit fraction...
Les messages affichés proviennent d'usenet.