Liste des Groupes | Revenir à s math |
Am 03.05.2024 um 15:23 schrieb FromTheRafters:0 < ω
omega is the first infinite ordinal. It is not larger than the natural numbers, it *is* the natural numbers.Well, actually, it is larger than _each and every_ natural number.
Using symbols: An e IN: n < ω.
Using a common depiction: 0 < 1 < 2 < 3 < ... < ω.
See: https://en.wikipedia.org/wiki/Ordinal_number
On the other hand, you are right, in the context of axiomatic set theory (if the natural numbers and the ordinals defined due to von Neumann) we do have IN = ω.
Les messages affichés proviennent d'usenet.