Re: Does the number of nines increase?

Liste des GroupesRevenir à s math 
Sujet : Re: Does the number of nines increase?
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.math
Date : 09. Jul 2024, 18:07:56
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <v6jqpc$1evbj$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11
User-Agent : Mozilla Thunderbird
Am 09.07.2024 um 18:53 schrieb WM:

Either there is a first unit fraction or this is not the case.
It is not the case.
Hint: If s is a unit fraction, 1/(1/s + 1) is a smaller one.

If it is not the case, then NUF(x) increases by more than 1, say by X, at that x where it is leaving 0.
1. NUF does not "increase" but "jump".
2. "That x where it is leaving 0" does not exist. :-)
Hint: NUF(x) = 0 for all x e IR, x <= 0 and NUF(x) = aleph_0 for all x e IR, x > 0.

But then there must exist an x <bla bla bla>
Hint: For all x e IR, x > 0 there are infinitely many unit fractions which are smaller than x. Namely the unit fractions 1/(ceil(1/x + 1), 1/(ceil(1/x + 2), 1/(ceil(1/x + 3), ...
Wie dumm kann man eigentlich sein, Mückenheim?

Date Sujet#  Auteur
13 Jul 25 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal