Sujet : Re: More complex numbers than reals?
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.mathDate : 15. Jul 2024, 19:53:26
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <v73r76$qh4c$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12
User-Agent : Mozilla Thunderbird
Am 15.07.2024 um 20:31 schrieb Python:
Le 15/07/2024 à 16:46, WM a écrit :
Probably the idea was discussed that an inclusion-monotonic sequence of infinite terms could have an empty intersection.
Which is an extremely trivial state of afairs, Mückenheim.
Hint: There is no natural number in the intersection of all "endsegments".
Extremely trivial reason: For each and every n e IN: n !e {n+1, n+2, n+3, ...}. In other words, An e IN: n !e INTERSECTION_(n e IN) {n+1, n+2, n+3, ...}.
Every sensible student
should be able to comprehend this simple fact.