Re: More complex numbers than reals?

Liste des GroupesRevenir à s math 
Sujet : Re: More complex numbers than reals?
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.math
Date : 15. Jul 2024, 20:08:25
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <v73s39$qrdi$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13
User-Agent : Mozilla Thunderbird
Am 15.07.2024 um 20:53 schrieb Moebius:
Am 15.07.2024 um 20:31 schrieb Python:
Le 15/07/2024 à 16:46, WM a écrit :
 
Probably the idea was discussed that an inclusion-monotonic sequence of infinite terms could have an empty intersection.
 Which is an extremely trivial state of afairs, Mückenheim.
 Hint: There is no natural number in the intersection of all "endsegments".
 Extremely trivial reason: For each and every n e IN: n !e {n+1, n+2, n+3, ...}. In other words, An e IN: n !e INTERSECTION_(n e IN) {n+1, n+2, n+3, ...}.
Hint: In (classical) mathematics {n+1, n+2, n+3, ...} is an infinite set for all n in IN.
Did you ever meet a "sensible student" who claimed that there is an n in IN such that {n+1, n+2, n+3, ...} is finite?

Date Sujet#  Auteur
1 Jul 25 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal