Re: Does the number of nines increase?

Liste des GroupesRevenir à s math 
Sujet : Re: Does the number of nines increase?
De : chris.m.thomasson.1 (at) *nospam* gmail.com (Chris M. Thomasson)
Groupes : sci.math
Date : 16. Jul 2024, 02:32:08
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <v74iip$uvo1$2@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13
User-Agent : Mozilla Thunderbird
On 7/15/2024 6:27 PM, Moebius wrote:
Am 16.07.2024 um 00:32 schrieb Chris M. Thomasson:
On 7/15/2024 5:41 AM, WM wrote:
Le 14/07/2024 à 17:27, Moebius a écrit :
>
For each and every x e IR, x > 0: NUF(x) = aleph_0
>
Wrong. All unit fractions are separated. Therefore there is a first one at y. NUF(y) = 1.
>
There is a first unit fraction at 1/1. There is no last unit fraction. Get over it man!
 Note that in the usual order < (defined on the rationals) 1/1 ist the last/largest unit fraction, while there IS NO first/smallest unit fraction:
 ... < 1/3 < 1/2 < 1/1.
 Mückenheim ist just talking nonsense.
 "All unit fractions are separated. Therefore Therefore there is a first one at y" is just an instance of a NON SEQUITUR.
 This man is dumb like shit.
 
going left to right, so to speak, The first one in the infinity is:
1/1, 1/2, 1/3, 1/4, ...
Going the other way around is impossible unless we explicitly define a finite step, say, 1/4 is the largest, rofl!
1/4, 1/3, 1/2, 1/1, wtf, ...?
Huh? WM is backwards? This must be his origin of a so called "most" largest and very dark natural number, indeed? Yikes!

Date Sujet#  Auteur
23 Jul 25 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal