Sujet : Re: 4D Visualisierung
De : chris.m.thomasson.1 (at) *nospam* gmail.com (Chris M. Thomasson)
Groupes : sci.mathDate : 13. Sep 2024, 22:58:21
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vc2cht$1259j$1@dont-email.me>
References : 1 2 3 4
User-Agent : Mozilla Thunderbird
On 9/11/2024 1:22 PM, guido wugi wrote:
Op 11-9-2024 om 10:15 schreef Chris M. Thomasson:
On 9/11/2024 1:12 AM, Chris M. Thomasson wrote:
On 8/28/2024 12:30 PM, guido wugi wrote:
[...]
>
Check this out:
>
https://youtu.be/IVR5I5mnrsg
>
;^)
>
Also, iirc, this experiment of mine has a vector with a non-zero 4d component...
>
https://youtu.be/KRkKZj9s3wk
I don't understand it, but they're beautiful graphics alright! But 4D?
Meanwhile I've put a Desmos4D graph of Clifford tori, Dupin cyclides (also shown together!) and Hopf fibration.
bolnorm4D.CT-DC-HF | Desmos <https://www.desmos.com/3d/rwj9vo31yc?lang=nl>
https://www.youtube.com/watch?v=1y6qrsJff-g&list=PL5xDSSE1qfb6c7UHcURl6wXh0pH4ARB75&index=21
Here is an example of a 4d vector ping ponging through -1...1 wrt its w component:
https://www.facebook.com/share/v/PC17LfU94uUjW6DYSo, the single attractor is at point (0, 0, 0, w) for the animation. There is a major effect on the field. Here is another simulation that shows the attractor at a fixed (0, 0, 0, 0) for the entire duration:
https://www.facebook.com/share/v/DXKhRoGZmpB9fX5Y/