Sujet : Re: How many different unit fractions are lessorequal than all unit fractions? (infinitary)
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.mathDate : 02. Nov 2024, 14:50:06
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vg5ame$3qfvj$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
User-Agent : Mozilla Thunderbird
Am 02.11.2024 um 14:21 schrieb joes:
Am Fri, 01 Nov 2024 18:03:26 +0100 schrieb WM:
If an invariable set of numbers is there, then there is a smallest and a
largest number of those which are existing.
Nonsense. For each and every n e IN there is an n' e IN (say n' = n+1) such that n' > n. There's no largest element in IN.
In the same way, for each and every u e {1/n : n e IN} there is an u' e {1/n : n e IN} (say u' = 1/(1/u + 1)) such that u' < u. There's no smallest element in {1/n : n e IN}.
Except in Mückenhausne, that is.
That's just wrong.
Indeed!
Mückenheim ist für jede Art von Mathematik zu doof und zu blöde. Vermutlich aber inzwischen auch nicht mehr mentally sane.