Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.mathDate : 23. Nov 2024, 06:18:35
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vhrojb$1j7o7$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
User-Agent : Mozilla Thunderbird
On 22.11.2024 16:11, joes wrote:
Am Fri, 22 Nov 2024 15:51:11 +0100 schrieb WM:
the sets of naturals and of prime numbers [can] cover each other.
As it should. You can give each prime an index.
Indeed! The two formulas
| p(1) = min P
| p(n+1) = min {p e P : p > p(n)} (for all n e IN)
(recursively) define the function p: IN --> P. Where IN is the set of all natural numbers and P is the set of all prime numbers.
Hint: p(1) = 2, p(2) = 3, p(3) = 5, ...
Actually, if p e P, then there is an (index) n e IN such that p(n) = p.
(It's easy to prove that p: IN --> P is a bijection.)