Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.mathDate : 16. Dec 2024, 09:27:19
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vjoo97$11npa$3@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla Thunderbird
On 15.12.2024 21:20, joes wrote:
Duh. All naturals are finite. You need to actually remove all inf.many
of them.
That is not possible with definable naturals:
∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo.
And numbers which succeed
∀k ∈ ℕ: ∩{E(1),E(2),...,E(k+1)} = ∩{E(1),E(2),...,E(k)}\{k}
produce finite endsegments and therefore are invisible.
Regards, WM