The truncated harmonic series diverges.

Liste des GroupesRevenir à s math 
Sujet : The truncated harmonic series diverges.
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.math
Date : 05. Mar 2025, 11:01:16
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vq97dc$2bkel$2@dont-email.me>
User-Agent : Mozilla Thunderbird
The harmonic series diverges. Kempner has shown in 1914 that all terms containing the digit 9 can be removed without changing the divergence.
Here is a simple derivation: https://www.hs-augsburg.de/~mueckenh/HI/ p. 15.
I think that we can remove all terms containing 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 in the denominator without changing the divergence.
Further I think we can remove every denominator containig any given number like 2025 without changing the divergence.
Further I think that we can remove the chain of all definable numbers without changing the divergence.
This is a proof of the huge set of dark numbers.
Regards, WM

Date Sujet#  Auteur
5 Mar 25 * The truncated harmonic series diverges.8WM
5 Mar 25 +* Re: The truncated harmonic series diverges.2Python
6 Mar 25 i`- Re: The truncated harmonic series diverges.1WM
5 Mar 25 `* Re: The truncated harmonic series diverges.5efji
5 Mar 25  +- Re: The truncated harmonic series diverges.1WM
8 Mar 25  `* Re: The truncated harmonic series diverges.3WM
8 Mar 25   `* Re: The truncated harmonic series diverges.2Alan Mackenzie
8 Mar 25    `- Re: The truncated harmonic series diverges.1WM

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal