Sujet : Re: how
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.mathDate : 22. May 2024, 20:13:26
Autres entêtes
Organisation : Nemoweb
Message-ID : <zCqM5B_nQZ0GpOh02ANlr269OcY@jntp>
References : 1 2 3 4 5 6 7 8 9 10
User-Agent : Nemo/0.999a
Le 22/05/2024 à 20:58, Jim Burns a écrit :
On 5/22/2024 1:57 PM, WM wrote:
Le 22/05/2024 à 17:48, Jim Burns a écrit :
There is no x > 0 smaller than all unit fractions.
¬∃ᴿx > 0: ∀¹ᐟᴺ ⅟k: x ≤ ⅟k
>
There is an x >= 0 smaller than all unit fractions.
| Assume you are correct.
| Assume that there is
| an x ≥ 0 smaller than all unit fractions.
One of them is zero.
|
| There are points 2⋅b¹ᐟᴺ > ½⋅b¹ᐟᴺ > 0
| such that
| Unit.fraction ⅟k < 2⋅b¹ᐟᴺ
| No unit.fraction < ½⋅b¹ᐟᴺ
|
| ⅟k < 2⋅b¹ᐟᴺ
| (⅟k)/4 < (2⋅b¹ᐟᴺ)/4
| ⅟(4⋅k) < ½⋅b¹ᐟᴺ
| Unit.fraction ⅟(4⋅k) < ½⋅b¹ᐟᴺ
| Contradiction.
Therefore,
you are not correct.
I am. It is 0.
But your "proofs" are nonsense. Disprove this: Between ℵo unit fractions there are at least ℵo real numbers x. For them NUF(x) = ℵo is wrong.
Regards, WM