Sujet : Re: how
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.mathDate : 13. Jun 2024, 17:44:59
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <v4f7mb$2bonk$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13
User-Agent : Mozilla Thunderbird
Am 13.06.2024 um 18:12 schrieb Moebius:
Am 13.06.2024 um 18:04 schrieb Moebius:
Am 13.06.2024 um 17:55 schrieb WM:
Daher würde ich es lieber so formulieren (um das klar zu stellen):
>
| Every number has ℵo numbers as successors.
| If only numbers having ℵo successors are removed (i.e. _all_ numbers)
| then nothing remains.
Hier anhand einiger Beispiele im Detail erklärt: [...]
D. h. _alle_ Elemente in IN haben ℵo Elemente in IN als "Nachfolger".
Wenn man nun die Differenzmenge von IN und der Menge {n e IN : n hat ℵo Elemente in IN als "Nachfolger"} betrachtet, dann ist das IN \ IN = { }.
-> nothing remains.
Maybe a _mathematical_ proof is helpful here.
An e IN: card({m e IN : m > n}) = ℵo (*)
"Every number has ℵo numbers as successors."
Theorem: IN \ {n e IN : card({m e IN : m > n}) = ℵo)} = { }
"If only numbers having ℵo numbers as successors are removed then nothing remains."
Proof: Since IN \ IN = { } all we have to show is that {n e IN : card({m e IN : m > n}) = ℵo)} = IN. But this follows immediately from (*).
After all, for all n, if n e IN then card({m e IN : m > n}) = ℵo (from (*)), hence n in {n e IN : card({m e IN : m > n}) = ℵo)}. And (trivially) if n in {n e IN : card({m e IN : m > n}) = ℵo)} then n in IN (by definition of {n e IN : card({m e IN : m > n}) = ℵo)}). Hence IN c {n e IN : card({m e IN : m > n}) = ℵo)} and {n e IN : card({m e IN : m > n}) = ℵo)} c IN, and hence IN = {n e IN : card({m e IN : m > n}) = ℵo)}. qed