Sujet : Re: how
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 22. Jun 2024, 18:34:40
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <b08a9d92-3824-4004-b114-4b560047c363@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11
User-Agent : Mozilla Thunderbird
On 6/22/2024 8:11 AM, WM wrote:
Le 21/06/2024 à 21:13, Jim Burns a écrit :
However,
if all FISONs are removed,
no remaining FISON is a superset.
>
The set of necerssary FISONs,
F such that ⋃{FISON}≠⋃({FISON}\{F})
if existing [nonempty], must have a smallest element - according to Cantor.
But it has not.
Therefore there is no necessary FISON.
Yes.
No FISON is necessary ⇔
Each FISON is unnecessary ⇐
For each FISON, a proper.superset.FISON exists.
We cannot find a necessary FISON because
each one covers only a tiny subset of ℕ.
Yes.
ℵo Elements are missing.
No.
Each FISON is in {FISON}
FISON.union U{FISON} and
minimal.inductive ⋂{inductive} are
both inductive and
both well.ordered.
NO FIRST jₓ ∈ U{FISON}: jₓ ∉ ⋂{inductive}
because
jₓ⁻¹ ∈ ⋂{inductive} ⇒ jₓ ∈ ⋂{inductive}
¬(jₓ⁻¹ ∈ ⋂{inductive} ∧ jₓ ∉ ⋂{inductive})
NO FIRST jₓ ∈ U{FISON}: jₓ ∉ ⋂{inductive}
NO jₓ ∈ U{FISON}: jₓ ∉ ⋂{inductive}
U{FISON} ⊆ ⋂{inductive}
NO FIRST kₓ ∈ ⋂{inductive}: kₓ ∉ U{FISON}
because
kₓ⁻¹ ∈ U{FISON} ⇒ kₓ ∈ U{FISON}
¬(kₓ⁻¹ ∈ U{FISON} ∧ kₓ ∉ U{FISON})
NO FIRST kₓ ∈ ⋂{inductive}: kₓ ∉ U{FISON}
NO kₓ ∈ ⋂{inductive}: kₓ ∉ U{FISON}
⋂{inductive} ⊆ U{FISON}
U{FISON} = ⋂{inductive}
That is not expalint by quantifier magic
but by mathematical facts:
Infinity is not finite.
Dark numbers.
ToMAYto, toMAHto,
Therefore,
there is NO FISON superset all FISONs.
>
But every FISON is a very, very proper subset:
∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo.
That statement covers all FISONs.
U{FISON} = ⋂{inductive}
∀n ∈ U{FISON}: |U{FISON}\{1,2,3,...,n}| = ℵ₀
∀n ∈ ⋂{inductive}: |⋂{inductive}\{1,2,3,...,n}| = ℵ₀
∀n ∈ U{FISON}: |⋂{inductive}\{1,2,3,...,n}| = ℵ₀
∀n ∈ ⋂{inductive}: |U{FISON}\{1,2,3,...,n}| = ℵ₀