Re: Algebric problem

Liste des GroupesRevenir à s math 
Sujet : Re: Algebric problem
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.math
Date : 26. Jun 2024, 16:30:04
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <45ced43b-4fbf-439c-961f-e17576c6ce5b@att.net>
References : 1
User-Agent : Mozilla Thunderbird
On 6/26/2024 10:17 AM, Richard Hachel wrote:

One commenter posed the problem:
 sqrt(3x+7)+sqrt(x+2)=1
 On the French forum,
mathematicians had some problems with this.
 However,
the solution is very simple,
and requires three lines of calculations
on a piece of paper.
Is the problem that
some of the possible solutions presented by
three lines of calculations
do not produce equality in the original equation?
Squaring can introduce more possible solutions.
for each x such that  √(3x+7)+√(x+2)=1
also  √(3x+7)=1-√(x+2)
for each x such that  √(3x+7)=1-√(x+2)
also  3x+7=1-2√(x+2)+x+2
but also
for each x such that  -√(3x+7)=1-√(x+2)
also  3x+7=1-2√(x+2)+x+2
for each x such that
  √(3x+7)=1-√(x+2) or
  -√(3x+7)=1-√(x+2)
also
  3x+7=1-2√(x+2)+x+2  and
  x+2=-√(x+2)
for each x such that
  √(3x+7)=1-√(x+2) or
  -√(3x+7)=1-√(x+2) or
  x+2=-√(x+2) or
  x+2=√(x+2)
also
  (x+2)²=x+2
  (x+1)(x+2)=0
  x=-1 or x=-2
Only -1 and -2 _can be_ a solution.
√(3⋅-1+7)+√(-1+2)=√4+√1≠1
√(3⋅-2+7)+√(-2+2)=√1+√0=1
Only -2 _is_ a solution.

 R.H.

Date Sujet#  Auteur
26 Jun 24 * Algebric problem6Richard Hachel
26 Jun 24 +- Re: Algebric problem1Mike Terry
26 Jun 24 +* Re: Algebric problem2Jim Burns
27 Jun 24 i`- Re: Algebric problem1Ross Finlayson
26 Jun 24 `* Re: Algebric problem2Python
26 Jun 24  `- Re: Algebric problem1Richard Hachel

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal