Sujet : Re: Does the number of nines increase?
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.mathDate : 09. Jul 2024, 22:33:44
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <6fa4c3e3-d18f-4671-827f-9dcc168ef58a@example.invalid>
References : 1 2 3 4 5 6 7 8 9 10 11 12
User-Agent : Mozilla Thunderbird
Am 09.07.2024 um 22:07 schrieb Chris M. Thomasson:
On 7/9/2024 5:11 AM, WM wrote:
Le 09/07/2024 à 03:04, Moebius a écrit :
Am 07.07.2024 um 22:24 schrieb WM:
Le 05/07/2024 à 15:54, Moebius a écrit :
Am 05.07.2024 um 09:39 schrieb WM:
> Le 04/07/2024 à 17:25, Moebius a écrit :
>> Am 04.07.2024 um 17:16 schrieb WM:
>>
>>> die Verteilung der ersten Stammbrüche
>>
>> es gibt keine "ersten Stammbrüche". Zu _jedem_ Stammbruch gibt es
>> (abzählbar) unendlich viele kleinere Stammbrüche.
>
> Wrong,
>
Nope.
>
Insufficient argument.
>
Hinweis: Wenn s ein Stammbruch ist, dann ist 1/(1/s + 1) ein Stammbruch, der kleiner ist als s.
>
Not true for the smallest unit fraction.
There is NO smallest unit fraction. Dark or not. :^)
Indeed!
Theorem: There is no smallest unit fraction.
Proof: If s is a unit fraction, then there's (by definition) a natural number n such that s = 1/n. Then n + 1 is a natural number to (by one of the peano axioms and the definition of +) and n + 1 > n (by the definition of >). Hence 1/(n + 1) < 1/n (by the rules of the field Q). And hence 1/(1/s + 1) < s (again by the rules of the field Q). Moreover 1/(1/s + 1) is a unit fraction (again by definition). Hence There is a unit fraction, namely 1/(1/s + 1), which is smaller than s.
If we define:
s is a smallest unit fraction =df s smaller than all other unit fractions
Then the theorem we just proved implies that THERE IS NO "smallest unit fraction".
HENCE in a mathematical context we would not be allowed to talk about "the smallest unit fraction" (as Mückenfuck does) simply because there IS NO such entity.
You see:
The round square is round an square.
The triange with 4 corners has 4 corners.
etc.