Sujet : Re: More complex numbers than reals?
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.mathDate : 09. Jul 2024, 23:35:47
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <v6ke03$1hehi$4@dont-email.me>
References : 1 2 3 4
User-Agent : Mozilla Thunderbird
Am 09.07.2024 um 21:08 schrieb Chris M. Thomasson:
Corrected:
Seems to boil down to:
Is uncountable infinity the same "size", as any other uncountable infinity? Say reals vs. complex numbers...
Nope.
IR and C do have the same "size", since card(IR) = card(C).
But there are "larger infinities" than just card(IR) = card(C) = c. (There’s a whole hierarchy of them, in fact.)
For example, P(IR) (i.e. {X: X c IR}.
See:
https://en.wikipedia.org/wiki/Aleph_number