Liste des Groupes | Revenir à s math |
Am 09.07.2024 um 22:07 schrieb Chris M. Thomasson:No smallest unit fraction because any unit fraction, say this one:
> On 7/9/2024 5:11 AM, WM wrote:
>> Le 09/07/2024 à 03:04, Moebius a écrit :
>>> Am 07.07.2024 um 22:24 schrieb WM:
>>>> Le 05/07/2024 à 15:54, Moebius a écrit :
>>>>> Am 05.07.2024 um 09:39 schrieb WM:
>>>>> > Le 04/07/2024 à 17:25, Moebius a écrit :
>>>>> >> Am 04.07.2024 um 17:16 schrieb WM:
>>>>> >>
>>>>> >>> die Verteilung der ersten Stammbrüche
>>>>> >>
>>>>> >> es gibt keine "ersten Stammbrüche". Zu _jedem_ Stammbruch gibt es
>>>>> >> (abzählbar) unendlich viele kleinere Stammbrüche.
>>>>> >
>>>>> > Wrong,
>>>>>
>>>>> Nope.
>>>>
>>>> Insufficient argument.
>>
>>> Hinweis: Wenn s ein Stammbruch ist, dann ist 1/(1/s + 1) ein
>>> Stammbruch, der kleiner ist als s.
>>
>> Not true for the smallest unit fraction.
> There is NO smallest unit fraction. Dark or not. :^)
Indeed!
Theorem: There is no smallest unit fraction.
Proof: If s is a unit fraction, then there's (by definition) a natural number n such that s = 1/n. Then n + 1 is a natural number to (by one of the peano axioms and the definition of +) and n + 1 > n (by the definition of >). Hence 1/(n + 1) < 1/n (by the rules of the field Q). And hence 1/(1/s + 1) < s (again by the rules of the field Q). Moreover 1/(1/s + 1) is a unit fraction (again by definition). Hence There is a unit fraction, namely 1/(1/s + 1), which is smaller than s.
If we define:
s is a smallest unit fraction =df s smaller than all other unit fractions
Then the theorem we just proved implies that THERE IS NO "smallest unit fraction".
HENCE in a mathematical context we would not be allowed to talk about "the smallest unit fraction" (as Mückenfuck does) simply because there IS NO such entity.lol!! You made me laugh. A triangle with 4 vertices is an interesting one. lol. Thanks. :^)
You see:
The round square is round an square.
The triange with 4 corners has 4 corners.
Les messages affichés proviennent d'usenet.