Re: Does the number of nines increase?

Liste des GroupesRevenir à s math 
Sujet : Re: Does the number of nines increase?
De : chris.m.thomasson.1 (at) *nospam* gmail.com (Chris M. Thomasson)
Groupes : sci.math
Date : 10. Jul 2024, 23:06:09
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <v6n0kh$231iu$4@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13
User-Agent : Mozilla Thunderbird
On 7/9/2024 2:17 PM, Moebius wrote:
Am 09.07.2024 um 22:42 schrieb Chris M. Thomasson:
On 7/9/2024 9:53 AM, WM wrote:
Le 09/07/2024 à 16:35, Moebius a écrit :
Am 09.07.2024 um 15:23 schrieb joes:
Am Tue, 09 Jul 2024 11:49:21 +0000 schrieb WM:
>
many don't understand that ℵo unit fractions cannot occupy a distance
smaller than all positive distances. Can you?
>
What does this mean? It should read "smaller than ANY".
>
Es bedeutet, dass Mückenheim (in diesem Kontext) nicht zwischen AxEy und EyAx unterscheiden kann.
>
That is nonsense. Either there is a first unit fraction or this is not the case.
>
There is a first unit fraction at 1/1. However, there is no last unit fraction... :^)
 No, with "first" he means a "smallest" unit fraction. Hence from this point of view 1/1 is the "last" (i.e. largest) unit fraction.
That is backwards!?!?!?! Shit. There is a largest unit fraction at 1/1, every other one is smaller, forever and ever...

       ... < 1/3 < 1/2 < 1/1.
 WM's claim is that there is a unit fraction WM such that
       Au e {1/n : n e IN}: WM <= u
 In other words:
       WM < ... < 1/3 < 1/2 < 1/1 ,
 such that there is no unit fraction u with
       u < WM < ... < 1/3 < 1/2 < 1/1 .
 Of course, this doesn't MAKE any sense (i.e. is bullshit). After all, 1/(1/WM + 1) would be a unit fraction with
       1/(1/WM + 1) < WM < ... < 1/3 < 1/2 < 1/1 .
 
Shit.

Date Sujet#  Auteur
10 Jul 25 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal