Sujet : Re: More complex numbers than reals?
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.mathDate : 16. Jul 2024, 14:03:56
Autres entêtes
Organisation : Nemoweb
Message-ID : <ed95lACUg-jmcwQxVGJcwXywVro@jntp>
References : 1 2 3 4 5 6 7 8 9 10
User-Agent : Nemo/0.999a
Le 15/07/2024 à 20:53, Moebius a écrit :
Am 15.07.2024 um 20:31 schrieb Python:
Le 15/07/2024 à 16:46, WM a écrit :
Probably the idea was discussed that an inclusion-monotonic sequence of infinite terms could have an empty intersection.
Which is an extremely trivial state of afairs,
Hint: There is no natural number in the intersection of all "endsegments".
True. But you claim an empty intersection of all infinite endsegments, i.e. endsegments which keep an infinite number of naturals in common with E(1). That is false.
Regards, WM