Re: WM and end segments...

Liste des GroupesRevenir à s math 
Sujet : Re: WM and end segments...
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.math
Date : 22. Jul 2024, 21:14:33
Autres entêtes
Organisation : Nemoweb
Message-ID : <hYHBwcZP2l4WCfbU19WrhqVGTLo@jntp>
References : 1 2 3 4 5 6
User-Agent : Nemo/0.999a
Le 22/07/2024 à 21:45, Alan Mackenzie a écrit :
WM <wolfgang.mueckenheim@tha.de> wrote:

Only a matheologian fixed in his views can claim that after knowing my game
 We've known your game for years;
You have not understood it. Otherwise if not agreeing you could show an error. But you can only curse:

 it is to obfuscate, confuse, and lie.

"You seem to be ignoring the fact that, after you have colored a countable family of pathes, say P0, P1, ..., Pn, ..., there may be other paths Q that are not on this countable list but have, nevertheless, had all their nodes and edges colored. Perhaps the first node and edge of Q were also in P1, the second node and edge of Q were in P2, etc. [...] by choosing the sequence of Pn's intelligently, you can, in fact, ensure that this sort of thing happens for every path Q." [Andreas Blass, loc cit]
 It can happen for every FINITE path Q.
Not for finite and not for infinite paths. If the second node is in P2, then also the first node is in P2. That is the principle of the Binary Tree.

An infinite path in an infinite binary tree can be coded as an infinite
sequence of Ls and Rs, corresponding to whether at the next node one goes
left or right.  So, for example, the very first path might be
LLLLLLLL.....
It is impossible to use infinite sequences of Ls or Rs. What can be used is a finite abbreviation like "LLLLLLLL.....". But there are only countably many finite
 But, supposing these infinite paths can be mapped to the integers, what
is the second path?  And the third one?  There is no systematic way of
numbering these paths.
There is no way to enumerate the rationals either. See https://osf.io/preprints/osf/tyvnk, 4 pages English or 4 pages German, according to your preference.
 It is clear that the number of such paths is the same as the power set of
the natural numbers.
Yes.

There are more elements in any power set than in
the original set.
Yes, but that has not the least to do with countability.

So there are more infinite paths than can be indexed
by the natural numbers.
There are more fractions than can be indexed. Nevertheless my game shows a contradiction. Can you understand that? The "explanation" of Andreas Blass is absolute nonsense because of the principle of the Binary Tree. Can you understand that?
Regards, WM

Date Sujet#  Auteur
21 Jul 24 * WM and end segments...50Chris M. Thomasson
21 Jul 24 +* Re: WM and end segments...2FromTheRafters
22 Jul 24 i`- Re: WM and end segments...1Chris M. Thomasson
22 Jul 24 +* Re: WM and end segments...46Ben Bacarisse
22 Jul 24 i+- Re: WM and end segments...1Ben Bacarisse
22 Jul 24 i+- Re: WM and end segments...1Chris M. Thomasson
22 Jul 24 i`* Re: WM and end segments...43WM
22 Jul 24 i `* Re: WM and end segments...42Alan Mackenzie
22 Jul 24 i  `* Re: WM and end segments...41WM
22 Jul 24 i   `* Re: WM and end segments...40Alan Mackenzie
22 Jul 24 i    `* Re: WM and end segments...39WM
22 Jul 24 i     +* Re: WM and end segments...3Chris M. Thomasson
22 Jul 24 i     i`* Re: WM and end segments...2Moebius
23 Jul 24 i     i `- Re: WM and end segments...1Chris M. Thomasson
23 Jul 24 i     `* Re: WM and end segments...35Alan Mackenzie
23 Jul 24 i      +* Re: WM and end segments...33WM
23 Jul 24 i      i`* Re: WM and end segments...32Chris M. Thomasson
23 Jul 24 i      i +* Re: WM and end segments...6Chris M. Thomasson
23 Jul 24 i      i i`* Re: WM and end segments...5Moebius
23 Jul 24 i      i i `* Re: WM and end segments...4Chris M. Thomasson
23 Jul 24 i      i i  +- Re: WM and end segments...1Chris M. Thomasson
23 Jul 24 i      i i  `* Re: WM and end segments...2Moebius
24 Jul 24 i      i i   `- Re: WM and end segments...1Moebius
23 Jul 24 i      i `* Re: WM and end segments...25Moebius
23 Jul 24 i      i  +* Re: WM and end segments...11Chris M. Thomasson
23 Jul 24 i      i  i`* Re: WM and end segments...10Moebius
23 Jul 24 i      i  i `* Re: WM and end segments...9Chris M. Thomasson
24 Jul 24 i      i  i  `* Re: WM and end segments...8Moebius
24 Jul 24 i      i  i   `* Re: WM and end segments...7Chris M. Thomasson
25 Jul 24 i      i  i    `* Re: WM and end segments...6Moebius
25 Jul 24 i      i  i     `* Re: WM and end segments...5Chris M. Thomasson
25 Jul 24 i      i  i      `* Re: WM and end segments...4Moebius
25 Jul 24 i      i  i       +- Re: WM and end segments...1Chris M. Thomasson
25 Jul 24 i      i  i       `* Re: WM and end segments...2Chris M. Thomasson
25 Jul 24 i      i  i        `- Re: WM and end segments...1Moebius
23 Jul 24 i      i  +* Re: WM and end segments...4Jim Burns
24 Jul 24 i      i  i+* Re: WM and end segments...2Moebius
24 Jul 24 i      i  ii`- Re: WM and end segments...1Jim Burns
24 Jul 24 i      i  i`- Re: WM and end segments...1WM
24 Jul 24 i      i  `* Re: WM and end segments...9WM
24 Jul 24 i      i   `* Re: WM and end segments...8Chris M. Thomasson
25 Jul 24 i      i    +* Re: WM and end segments...5Moebius
25 Jul 24 i      i    i`* Re: WM and end segments...4Chris M. Thomasson
26 Jul 24 i      i    i `* Re: WM and end segments...3Moebius
26 Jul 24 i      i    i  +- Re: WM and end segments...1Chris M. Thomasson
26 Jul 24 i      i    i  `- Re: WM and end segments...1Jim Burns
25 Jul 24 i      i    `* Re: WM and end segments...2FromTheRafters
25 Jul 24 i      i     `- Re: WM and end segments...1Chris M. Thomasson
23 Jul 24 i      `- Re: WM and end segments...1Chris M. Thomasson
22 Jul 24 `- Re: WM and end segments...1Chris M. Thomasson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal