Sujet : Re: How many different unit fractions are lessorequal than all unit fractions?
De : noreply (at) *nospam* example.org (joes)
Groupes : sci.mathDate : 09. Sep 2024, 20:57:44
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <fd6d87b8f6f207c6fd929a740046f199c86aafdd@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Mon, 09 Sep 2024 20:44:35 +0200 schrieb WM:
On 09.09.2024 17:15, joes wrote:
I still don’t understand. You can choose any size of interval and slide
it around to include an arbitrary number of unit fractions.
ℵo unit fractions exist invariably and require a minimum length d. Take
one of the ℵo gaps. It is smaller than d.
SO WHAT
Simplest argument: If a chain of real points exists on the real axis,
then it has a beginning.
Proof?
-- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:It is not guaranteed that n+1 exists for every n.