Sujet : Re: How many different unit fractions are lessorequal than all unit fractions?
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.mathDate : 10. Sep 2024, 20:27:32
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vbq6j4$34b4u$2@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
User-Agent : Mozilla Thunderbird
Am 10.09.2024 um 20:35 schrieb Chris M. Thomasson:
On 9/9/2024 5:32 PM, Moebius wrote:
Am 10.09.2024 um 01:08 schrieb Chris M. Thomasson:
>
Take the gap between:
>
1/1 and 1/2. There are infinitely many unit fractions that are small enough to fit within that gap.
>
Oh, really?! Could you name (just) o n e? :-)
1/4?
Hmmm... 1/2 < 1/4 < 1/1
i.e. 0.5 < 0.25 < 1.
Are you sure?
I mean ... a unit fraction u such that 1/2 < u < 1/1. :-o
On the other hand, 1/2 < 1/2 + 1/4 < 1/1
i.e. 0.5 < 0.75 < 1.
But 1/2 + 1/4 = 3/4 is not a unit fraction. :-P