Re: 4D Visualisierung

Liste des GroupesRevenir à s math 
Sujet : Re: 4D Visualisierung
De : wugi (at) *nospam* brol.invalid (guido wugi)
Groupes : sci.math
Date : 17. Sep 2024, 20:46:33
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vccmap$3jksm$1@dont-email.me>
References : 1 2 3 4
User-Agent : Mozilla Thunderbird
Op 16-9-2024 om 21:49 schreef Chris M. Thomasson:
Trajectory bundles: now these, being curves, can be done in 4D as well...
>
>
I need to study existing your work to see where I should/could plot all of my vectors that have non-zero 4d w's as in (x, y, z, w). That would be interesting. I just need to find some time to give it a go, been really busy lately. Shit... Well... Now, when I do it, I will start small and create 4 axes in the 3d plane. Ask you a lot of questions... ;^) It would be a learning experience for me.
>
Also, I think it might help a bit if I colored any vector with a non-zero w with a special color spectrum... Humm... Keep in mind that I am only plotting the (x, y, z) parts of the vectors that my field algorithm generates. So, I can see how non-zero w's cast an influence upon the field wrt the (x, y, z) parts of an n-ary vector.
>
I can do the coloring thing in my current work. If any vector has a non-zero w, make its color _unique_ among all colors used in the field render. Humm...
I propose you try this example file.
bolnorm4D. Parabola | Desmos <https://www.desmos.com/3d/igi6shir3e?lang=nl>
A graph of the complex Parabola w=z^2.
The axes can modified/put to rotation with one of two angle control sets (or both;-) :
1. "initial axis position controls", a 'spherical coordinate'-like set of angles α,β,γ,δ; and
2. "axis plane rotation controls", a set of angles for the six possible axis-plane rotations: ζ1,η1,ζ2,η2,ζ3,η3.
The resulting projected axis points are called X,Y,Z,V, defined by 3D coordinates.
A 4D coordinate (a,b,c,d) is graphed as a point
E(a,b,c,d)=aX+bY+cZ+dV.
The graph w=f(z) or u+iv=f(x+iy) is produced by the 4D points
E(x,y,u,v)
The function definitions are stated apart, eg,
Fre(x,y)=xx-yy, Fim(x,y)=2xy
(Desmos lacks yet complex function handling)
A surface is defined with variables u,v (not to be confused with variables u+iv=w!!).
A curve is defined with variable t. Parameter curves are obtained using a parm list L=[a,b...c]
The parabola is rendered by
E(u,v,Fre(u,v),Fim(u,v))
In polar coordinates we'd have
E(u cos v, u sin v, Gre(u,v),Gim(u,v))
You can try out 4D rendering right away with this file!
If you have a function definition with parms u and v, or t and L,
or x,y,z,w, making z a 3D-function z=f(x,y) and w a list or a slider parm),
all you need to render is
E(u,v,F1(u,v),F2(u,v)) or
E(t,L,F1(t,L),F2(t,L)) and another by swapping t and L, or
E(u,v,f(u,v),w)
...
--
guido wugi

Date Sujet#  Auteur
28 Aug 24 * 4D Visualisierung58guido wugi
28 Aug 24 +* Re: 4D Visualisierung16Chris M. Thomasson
28 Aug 24 i`* Re: 4D Visualisierung15Chris M. Thomasson
28 Aug 24 i +* Re: 4D Visualisierung4guido wugi
29 Aug 24 i i`* Re: 4D Visualisierung3Chris M. Thomasson
29 Aug 24 i i `* Re: 4D Visualisierung2FromTheRafters
29 Aug 24 i i  `- Re: 4D Visualisierung1Chris M. Thomasson
28 Aug 24 i `* Re: 4D Visualisierung10guido wugi
28 Aug 24 i  +* Re: 4D Visualisierung7FromTheRafters
29 Aug 24 i  i`* Re: 4D Visualisierung6guido wugi
29 Aug 24 i  i `* Re: 4D Visualisierung5Chris M. Thomasson
29 Aug 24 i  i  `* Re: 4D Visualisierung4guido wugi
29 Aug 24 i  i   +- Re: 4D Visualisierung1Chris M. Thomasson
29 Aug 24 i  i   `* Re: 4D Visualisierung2Chris M. Thomasson
15 Sep 24 i  i    `- Re: 4D Visualisierung1Chris M. Thomasson
29 Aug 24 i  `* Re: 4D Visualisierung2Chris M. Thomasson
29 Aug 24 i   `- Re: 4D Visualisierung1Chris M. Thomasson
29 Aug 24 +* Re: 4D Visualisierung2Chris M. Thomasson
29 Aug 24 i`- Re: 4D Visualisierung1Chris M. Thomasson
11 Sep 24 +* Re: 4D Visualisierung9Chris M. Thomasson
11 Sep 24 i`* Re: 4D Visualisierung8Chris M. Thomasson
11 Sep 24 i `* Re: 4D Visualisierung7guido wugi
11 Sep 24 i  +- Re: 4D Visualisierung1Chris M. Thomasson
13 Sep 24 i  `* Re: 4D Visualisierung5Chris M. Thomasson
14 Sep 24 i   `* Re: 4D Visualisierung4guido wugi
14 Sep 24 i    `* Re: 4D Visualisierung3Chris M. Thomasson
14 Sep 24 i     `* Re: 4D Visualisierung2guido wugi
15 Sep 24 i      `- Re: 4D Visualisierung1Chris M. Thomasson
15 Sep 24 +* Re: 4D Visualisierung15Chris M. Thomasson
15 Sep 24 i`* Re: 4D Visualisierung14Chris M. Thomasson
15 Sep 24 i `* Re: 4D Visualisierung13guido wugi
15 Sep 24 i  `* Re: 4D Visualisierung12Chris M. Thomasson
15 Sep 24 i   `* Re: 4D Visualisierung11guido wugi
15 Sep 24 i    +* Re: 4D Visualisierung3Chris M. Thomasson
15 Sep 24 i    i`* Re: 4D Visualisierung2guido wugi
15 Sep 24 i    i `- Re: 4D Visualisierung1Chris M. Thomasson
15 Sep 24 i    `* Re: 4D Visualisierung7Chris M. Thomasson
15 Sep 24 i     +- Re: 4D Visualisierung1Chris M. Thomasson
15 Sep 24 i     `* Re: 4D Visualisierung5Chris M. Thomasson
16 Sep 24 i      `* Re: 4D Visualisierung4guido wugi
17 Sep 24 i       `* Re: 4D Visualisierung3Chris M. Thomasson
17 Sep 24 i        `* Re: 4D Visualisierung2guido wugi
20 Sep 24 i         `- Re: 4D Visualisierung1Chris M. Thomasson
15 Sep 24 +* Re: 4D Visualisierung2Chris M. Thomasson
15 Sep 24 i`- Re: 4D Visualisierung1Chris M. Thomasson
15 Sep 24 +* Re: 4D Visualisierung6Chris M. Thomasson
16 Sep 24 i`* Re: 4D Visualisierung5guido wugi
16 Sep 24 i `* Re: 4D Visualisierung4Chris M. Thomasson
17 Sep 24 i  `* Re: 4D Visualisierung3guido wugi
17 Sep 24 i   `* Re: 4D Visualisierung2Chris M. Thomasson
17 Sep 24 i    `- Re: 4D Visualisierung1guido wugi
19 Sep 24 +* Re: 4D Visualisierung6Chris M. Thomasson
19 Sep 24 i`* Re: 4D Visualisierung5wugi
19 Sep 24 i `* Re: 4D Visualisierung4Chris M. Thomasson
19 Sep 24 i  `* Re: 4D Visualisierung3wugi
20 Sep 24 i   `* Re: 4D Visualisierung2Chris M. Thomasson
20 Sep 24 i    `- Re: 4D Visualisierung1Chris M. Thomasson
20 Sep 24 `- Re: 4D Visualisierung1Chris M. Thomasson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal