Sujet : Re: How many different unit fractions are lessorequal than all unit fractions?
De : noreply (at) *nospam* example.org (joes)
Groupes : sci.mathDate : 27. Sep 2024, 20:51:03
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <53030224ada88d68af993b0a1c8378c19771f8f6@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Fri, 27 Sep 2024 21:08:46 +0200 schrieb WM:
On 25.09.2024 18:53, Moebius wrote:
On 9/24/24 3:43 PM, WM wrote:
>
It contains ∀n ∈ ℕ: 1/n - 1/(n+1) > 0 from which follows that never
two different5 fractions sit upon each other. From NUF(0) = 0 the
[existence of the] smallest unit fraction follows immediately
Proof?
Between two unit fractions there is always a finite gap.
Duh, that is your premise.
-- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:It is not guaranteed that n+1 exists for every n.