Sujet : Re: How many different unit fractions are lessorequal than all unit fractions? (infinitary)
De : noreply (at) *nospam* example.org (joes)
Groupes : sci.mathDate : 03. Nov 2024, 09:52:19
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <9a16dc217c4a1833dd297216773623a70ad06a10@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Sat, 02 Nov 2024 18:42:15 +0100 schrieb WM:
On 02.11.2024 14:50, Moebius wrote:
Am 02.11.2024 um 14:21 schrieb joes:
Am Fri, 01 Nov 2024 18:03:26 +0100 schrieb WM:
If an invariable set of numbers is there, then there is a smallest
and a largest number of those which are existing.
or each and every n e IN there is an n' e IN (say n' = n+1)
Actual infinity is not based on claims for each and every, but concerns
all.
Lol. That actually sheds some light on your thought process:
how do you suppose some property holds for all x, but not
for every?
-- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:It is not guaranteed that n+1 exists for every n.