Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.mathDate : 07. Nov 2024, 10:04:42
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vghvr9$2j3sg$2@dont-email.me>
References : 1 2 3 4 5 6 7 8 9
User-Agent : Mozilla Thunderbird
On 07.11.2024 01:00, Moebius wrote:
Hint: we do not have to "decide" if a number z is inside or outside of a certain interval. It IS EITHER inside of the interval OR NOT. (No "decision" necessary.)
And when we cover the real axis by intervals
--------_1_--------_2_--------_3_--------_4_--------_5_--------_...
J(n) = [n - √2/10, n + √2/10]
in a clever way, then all rational numbers are midpoints of intervals and no irrational number is outside of all intervals.
That is the power of infinity!!!
Regards, WM