Re: Incompleteness of Cantor's enumeration of the rational numbers

Liste des GroupesRevenir à s math 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.math
Date : 10. Nov 2024, 00:27:42
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
User-Agent : Mozilla Thunderbird
On 11/9/2024 6:45 AM, WM wrote:
On 08.11.2024 19:01, Jim Burns wrote:
On 11/8/2024 5:18 AM, WM wrote:

My understanding of mathematics and geometry
is that
reordering cannot increase the measure
(only reduce it by overlapping).
This is a basic axiom which
will certainly be agreed to by
everybody not conditioned by matheology.
>
By
"everybody not conditioned by matheology"
you mean
"everybody who hasn't thought much about infinity"
>
Everybody who believes that the intervals
I(n) = [n - 1/10, n + 1/10]
could grow in length or number
to cover the whole real axis
is a fool or worse.
Our sets do not change.
The set
   {[n-⅒,n+⅒]: n∈ℕ⁺}
with the midpoints at
   ⟨ 1, 2, 3, 4, 5, ... ⟩
does not _change_ to the set
   {[iₙ/jₙ-⅒,iₙ/jₙ+⅒]: n∈ℕ⁺}
with the midpoints at
   ⟨ 1/1, 1/2, 2/1, 1/3, 2/2, ... ⟩
----
Either
all instances of a 𝗰𝗹𝗮𝗶𝗺 about a set
are _only_ true or _only_ false
or
a set changes.
In the first case, with the not.changing sets,
a finite 𝘀𝗲𝗾𝘂𝗲𝗻𝗰𝗲 of 𝗰𝗹𝗮𝗶𝗺𝘀 which
  has only true.or.not.first.false 𝗰𝗹𝗮𝗶𝗺𝘀
has only true 𝗰𝗹𝗮𝗶𝗺𝘀.
Even though
we are _not_ physically able to check, for each number
  in an infinite set of numbers,
  that a 𝗰𝗹𝗮𝗶𝗺 is true about it,
we _are_ physically able to check, for each 𝗰𝗹𝗮𝗶𝗺
  in a finite 𝘀𝗲𝗾𝘂𝗲𝗻𝗰𝗲 of 𝗰𝗹𝗮𝗶𝗺𝘀,
  that it is not.first.false in that 𝘀𝗲𝗾𝘂𝗲𝗻𝗰𝗲.
Also, we already know some 𝗰𝗹𝗮𝗶𝗺𝘀 to be true.
Some finite 𝘀𝗲𝗾𝘂𝗲𝗻𝗰𝗲𝘀 of 𝗰𝗹𝗮𝗶𝗺𝘀 are
  known to be only true.or.not.first.false 𝗰𝗹𝗮𝗶𝗺𝘀,
and thus known to be only true 𝗰𝗹𝗮𝗶𝗺𝘀.
Un.physically.checkable numbers do not
  prevent us from knowing they're true 𝗰𝗹𝗮𝗶𝗺𝘀.
In the second case, with the changing sets,
who knows?
Perhaps something else could be done,
but not that.
In any case,
what.we.do is the first case, with
its not.changing sets and
its known.about infinity.
For that reason (and more, I suspect),
our sets do not change.

Everybody who believes that
the intervals
I(n) = [n - 1/10, n + 1/10]
could grow in length or number
to cover the whole real axis
is a fool or worse.
Our sets do not change.
Infinite sets can correspond to
other infinite sets which,
without much thought about infinity,
would seem to be a different "size".
Consider geometry.
Similar triangles have
corresponding sides in the same ratio.
Consider these points, line.segments, and triangles
in the ⟨x,y⟩.plane
A = ⟨0,-1⟩
B = ⟨0,0⟩
C = ⟨x,0⟩  with 0 < x < 1
D = ⟨1,0⟩
E = ⟨1,y⟩  with points A C E collinear.
△ABC and △EDC are similar
△ABC ∼ △EDC
μA͞B = 1
μB͞C = x
μE͞D = y
μD͞C = 1-x
Similar triangles.
μA͞B/μB͞C = μE͞D/μD͞C
1/x = y/(1-x)
y = 1/x - 1
x = 1/(y+1)
To each point C = ⟨x,0⟩ in (0,1)×{0}
there corresponds
exactly one point E = ⟨1,y⟩ in {1}×(0,+∞)
and vice versa.
(0,1)×{0} is not stretched over {1}×(0,+∞)
{1}×(0,+∞) is not shrunk to (0,1)×{0}
They both _are_
And their points correspond
by line A͞C͞E through point A.
Consider again the two sets of midpoints
⟨ 1, 2, 3, 4, 5, ... ⟩ and
⟨ 1/1, 1/2, 2/1, 1/3, 2/2, ... ⟩
They both _are_
And their points correspond
by i/j ↦ n = (i+j-1)(i+j-2)/2+i

Date Sujet#  Auteur
3 Nov 24 * Re: Incompleteness of Cantor's enumeration of the rational numbers504Jim Burns
4 Nov 24 `* Re: Incompleteness of Cantor's enumeration of the rational numbers503WM
4 Nov 24  `* Re: Incompleteness of Cantor's enumeration of the rational numbers502Jim Burns
4 Nov 24   +* Re: Incompleteness of Cantor's enumeration of the rational numbers480WM
5 Nov 24   i`* Re: Incompleteness of Cantor's enumeration of the rational numbers479Jim Burns
5 Nov 24   i +* Re: Incompleteness of Cantor's enumeration of the rational numbers4Jim Burns
5 Nov 24   i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)3Ross Finlayson
5 Nov 24   i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)2Ross Finlayson
5 Nov 24   i i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)1Chris M. Thomasson
6 Nov 24   i +* Re: Incompleteness of Cantor's enumeration of the rational numbers469WM
6 Nov 24   i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers468Jim Burns
6 Nov 24   i i +* Re: Incompleteness of Cantor's enumeration of the rational numbers465WM
6 Nov 24   i i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers464Jim Burns
6 Nov 24   i i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers463WM
6 Nov 24   i i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers462Jim Burns
7 Nov 24   i i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers461WM
7 Nov 24   i i i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Jim Burns
7 Nov 24   i i i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers6WM
7 Nov 24   i i i    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5Jim Burns
7 Nov 24   i i i    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers4WM
7 Nov 24   i i i    i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
7 Nov 24   i i i    i   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
7 Nov 24   i i i    i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers1Chris M. Thomasson
7 Nov 24   i i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers453Jim Burns
7 Nov 24   i i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers452WM
8 Nov 24   i i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers451Jim Burns
8 Nov 24   i i i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers450WM
8 Nov 24   i i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers18Richard Damon
8 Nov 24   i i i        i`* Re: Incompleteness of Cantor's enumeration of the rational numbers17WM
8 Nov 24   i i i        i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Richard Damon
9 Nov 24   i i i        i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
8 Nov 24   i i i        i `* Re: Incompleteness of Cantor's enumeration of the rational numbers14joes
8 Nov 24   i i i        i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Moebius
8 Nov 24   i i i        i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers6Moebius
9 Nov 24   i i i        i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5WM
9 Nov 24   i i i        i  i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers4Chris M. Thomasson
9 Nov 24   i i i        i  i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers3Moebius
10 Nov 24   i i i        i  i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers2WM
10 Nov 24   i i i        i  i     `- Re: Incompleteness of Cantor's enumeration of the rational numbers1Chris M. Thomasson
9 Nov 24   i i i        i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers6WM
26 Dec 24   i i i        i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers5Chris M. Thomasson
26 Dec 24   i i i        i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers4Moebius
27 Dec 24   i i i        i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers3Chris M. Thomasson
27 Dec 24   i i i        i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
28 Dec 24   i i i        i       `- Re: Incompleteness of Cantor's enumeration of the rational numbers1Chris M. Thomasson
8 Nov 24   i i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (doubling-spaces)2Ross Finlayson
8 Nov 24   i i i        i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (doubling-spaces)1Ross Finlayson
8 Nov 24   i i i        `* Re: Incompleteness of Cantor's enumeration of the rational numbers429Jim Burns
9 Nov 24   i i i         `* Re: Incompleteness of Cantor's enumeration of the rational numbers428WM
10 Nov 24   i i i          `* Re: Incompleteness of Cantor's enumeration of the rational numbers427Jim Burns
10 Nov 24   i i i           `* Re: Incompleteness of Cantor's enumeration of the rational numbers426WM
10 Nov 24   i i i            +- Re: Incompleteness of Cantor's enumeration of the rational numbers (exponential)1Ross Finlayson
10 Nov 24   i i i            +* Re: Incompleteness of Cantor's enumeration of the rational numbers388Jim Burns
11 Nov 24   i i i            i`* Re: Incompleteness of Cantor's enumeration of the rational numbers387WM
11 Nov 24   i i i            i `* Re: Incompleteness of Cantor's enumeration of the rational numbers386Jim Burns
11 Nov 24   i i i            i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers385WM
11 Nov 24   i i i            i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers5FromTheRafters
12 Nov 24   i i i            i   i`* Re: Incompleteness of Cantor's enumeration of the rational numbers4WM
12 Nov 24   i i i            i   i +- Re: Incompleteness of Cantor's enumeration of the rational numbers1FromTheRafters
12 Nov 24   i i i            i   i `* Re: Incompleteness of Cantor's enumeration of the rational numbers2joes
12 Nov 24   i i i            i   i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
12 Nov 24   i i i            i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
12 Nov 24   i i i            i   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
12 Nov 24   i i i            i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers377Jim Burns
12 Nov 24   i i i            i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers376WM
12 Nov 24   i i i            i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers375Jim Burns
12 Nov 24   i i i            i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers374WM
13 Nov 24   i i i            i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
13 Nov 24   i i i            i       i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
13 Nov 24   i i i            i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers371Jim Burns
13 Nov 24   i i i            i        `* Re: Incompleteness of Cantor's enumeration of the rational numbers370WM
13 Nov 24   i i i            i         `* Re: Incompleteness of Cantor's enumeration of the rational numbers369Jim Burns
13 Nov 24   i i i            i          `* Re: Incompleteness of Cantor's enumeration of the rational numbers368WM
14 Nov 24   i i i            i           `* Re: Incompleteness of Cantor's enumeration of the rational numbers367Jim Burns
14 Nov 24   i i i            i            +* Re: Incompleteness of Cantor's enumeration of the rational numbers6FromTheRafters
14 Nov 24   i i i            i            i`* Re: Incompleteness of Cantor's enumeration of the rational numbers5Jim Burns
14 Nov 24   i i i            i            i +* Re: Incompleteness of Cantor's enumeration of the rational numbers3Ross Finlayson
15 Nov 24   i i i            i            i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (research)2Ross Finlayson
15 Nov 24   i i i            i            i i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (research)1Ross Finlayson
14 Nov 24   i i i            i            i `- Re: Incompleteness of Cantor's enumeration of the rational numbers1FromTheRafters
14 Nov 24   i i i            i            `* Re: Incompleteness of Cantor's enumeration of the rational numbers360WM
14 Nov 24   i i i            i             +* Re: Incompleteness of Cantor's enumeration of the rational numbers290Jim Burns
15 Nov 24   i i i            i             i`* Re: Incompleteness of Cantor's enumeration of the rational numbers289WM
15 Nov 24   i i i            i             i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2joes
15 Nov 24   i i i            i             i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
15 Nov 24   i i i            i             i `* Re: Incompleteness of Cantor's enumeration of the rational numbers286Jim Burns
15 Nov 24   i i i            i             i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers285WM
15 Nov 24   i i i            i             i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers284Chris M. Thomasson
16 Nov 24   i i i            i             i    +- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers279Moebius
16 Nov 24   i i i            i             i    i+- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    i+* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
16 Nov 24   i i i            i             i    ii`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
16 Nov 24   i i i            i             i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers275Chris M. Thomasson
16 Nov 24   i i i            i             i    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers274Chris M. Thomasson
16 Nov 24   i i i            i             i    i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Chris M. Thomasson
16 Nov 24   i i i            i             i    i  i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers13FromTheRafters
16 Nov 24   i i i            i             i    i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers12Chris M. Thomasson
16 Nov 24   i i i            i             i    i  i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
16 Nov 24   i i i            i             i    i  i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    i  i +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Moebius
17 Nov 24   i i i            i             i    i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers2FromTheRafters
16 Nov 24   i i i            i             i    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers258Moebius
16 Nov 24   i i i            i             i    +- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
14 Nov 24   i i i            i             `* Re: Incompleteness of Cantor's enumeration of the rational numbers69Jim Burns
10 Nov 24   i i i            `* Re: Incompleteness of Cantor's enumeration of the rational numbers36Chris M. Thomasson
6 Nov 24   i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (opinions)2Ross Finlayson
6 Nov 24   i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5WM
4 Nov 24   `* Re: Incompleteness of Cantor's enumeration of the rational numbers21Chris M. Thomasson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal