Re: Incompleteness of Cantor's enumeration of the rational numbers

Liste des GroupesRevenir à s math 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.math
Date : 13. Nov 2024, 20:38:01
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <157a949d-6c19-4693-8cee-9e067268ae45@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla Thunderbird
On 11/13/2024 11:31 AM, WM wrote:
On 13.11.2024 10:08, Jim Burns wrote:
On 11/12/2024 4:38 PM, WM wrote:
On 12.11.2024 20:01, Jim Burns wrote:
On 11/12/2024 11:43 AM, WM wrote:

But the rationals are more in the sense that
they include all naturals and 1/2.
>
These intervals
{[i/j-⅒,i/j+⅒]: i/j∈ℕ⁺/ℕ⁺}
cover all fractions ℕ⁺/ℕ⁺
>
But these are more intervals.
>
Are there more, though?
Or are there fewer?
i/j ↦ (i+j-1)(i+j-1)+2⋅i
>
⟨ 1/1 1/2 2/1 1/3 2/2 3/1 1/4 2/3 ... ⟩

⟨ 2   4   6   8   10  12  14  16 ... ⟩
>
or
⟨ 1/1 1/2 2/1 1/3 2/2 3/1 1/4 2/3 ... ⟩

⟨ 2   3   5   7   11  13  17  19 ... ⟩
>
or
⟨ 1/1        1/2       2/1  ... ⟩

⟨ 10^10   10^10^10  10^10^10^10  ... ⟩
Yes,
or those, too.
_Without giving infinity much thought_
they each make it appear that
  ⟨ 1/1 1/2 2/1 1/3 2/2 3/1 1/4 2/3 ... ⟩
is strictly smaller than
  ⟨ 1   2   3   4   5   6   7   8   ... ⟩
My modest proposal is that
we stop declaring conclusions about infinity
without giving infinity much thought.

Or do infinite sets have different rules
than finite sets do?
>
If infinite sets obey the rules sketched above,
... _and are finite_ ...

then set theorists must discard geometry
because
 by shifting intervals
 the relative covering 1/5 of ℝ+ becomes oo*ℝ,
and analysis
because
 the constant sequence 1/5, 1/5, 1/5, ...
 has limit oo,
and logic
because of
 Bob.
----
 by shifting intervals
 the relative covering 1/5 of ℝ+ becomes oo*ℝ,
By definition,
the value of a measure is an extended real≥0
An extended real≥0 is either
Archimedean == having a countable.to bound,  or
non.Archimedean == not.having a countable.to bound.
The extended reals≥0 have only
the standard reals≥0, which are Archimedean, and
a single non.Archimedean point≥0  +∞
Neither the measure of the union of unshifted intervals
nor the measure of the union of shifted intervals
are Archimedean == neither has a countable.to bound.
Both the measure of the interval.union before shifting
and the measure of the interval.union after shifting
are the single non.Archimedean value  +∞
No,
the measure doesn't _become_ +∞
It has the same value +∞ before and after shifting.
----
 the constant sequence 1/5, 1/5, 1/5, ...
 has limit oo,
If
f(x) = y is continuous at xₗᵢₘ
then
the limit yₗᵢₘ of the value equals
  the value f(xₗᵢₘ) of the limit
⎛ x₁ x₂ x₃ ... → xₗᵢₘ
⎜ f(xₙ) = yₙ
⎜ y₁ y₂ y₃ ... → yₗᵢₘ
⎝ ⇒  f(xₗᵢₘ) = yₗᵢₘ
If
any function which jumps
(which crosses a line without intersecting it)
cannot be continuous everywhere,
then
there are uncountably.many points,
more points than names.for.points.
If
any function which jumps
cannot be continuous everywhere,
but
there aren't uncountably.many points,
then
it's impossible for what's described to exist.
----
 Bob.
KING BOB!
https://www.youtube.com/watch?v=TjAg-8qqR3g
If,
  in a set A which
  can match one of its proper subsets B,
  A ⊃≠ B  ∧  |A| = |B|
  (B can overwrite A one.for.one),
and,
  before overwriting, Bob is in A\B
then
  after overwriting, Bob isn't in overwritten.A = B

Date Sujet#  Auteur
3 Nov 24 * Re: Incompleteness of Cantor's enumeration of the rational numbers504Jim Burns
4 Nov 24 `* Re: Incompleteness of Cantor's enumeration of the rational numbers503WM
4 Nov 24  `* Re: Incompleteness of Cantor's enumeration of the rational numbers502Jim Burns
4 Nov 24   +* Re: Incompleteness of Cantor's enumeration of the rational numbers480WM
5 Nov 24   i`* Re: Incompleteness of Cantor's enumeration of the rational numbers479Jim Burns
5 Nov 24   i +* Re: Incompleteness of Cantor's enumeration of the rational numbers4Jim Burns
5 Nov 24   i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)3Ross Finlayson
5 Nov 24   i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)2Ross Finlayson
5 Nov 24   i i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)1Chris M. Thomasson
6 Nov 24   i +* Re: Incompleteness of Cantor's enumeration of the rational numbers469WM
6 Nov 24   i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers468Jim Burns
6 Nov 24   i i +* Re: Incompleteness of Cantor's enumeration of the rational numbers465WM
6 Nov 24   i i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers464Jim Burns
6 Nov 24   i i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers463WM
6 Nov 24   i i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers462Jim Burns
7 Nov 24   i i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers461WM
7 Nov 24   i i i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Jim Burns
7 Nov 24   i i i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers6WM
7 Nov 24   i i i    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5Jim Burns
7 Nov 24   i i i    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers4WM
7 Nov 24   i i i    i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
7 Nov 24   i i i    i   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
7 Nov 24   i i i    i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers1Chris M. Thomasson
7 Nov 24   i i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers453Jim Burns
7 Nov 24   i i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers452WM
8 Nov 24   i i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers451Jim Burns
8 Nov 24   i i i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers450WM
8 Nov 24   i i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers18Richard Damon
8 Nov 24   i i i        i`* Re: Incompleteness of Cantor's enumeration of the rational numbers17WM
8 Nov 24   i i i        i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Richard Damon
9 Nov 24   i i i        i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
8 Nov 24   i i i        i `* Re: Incompleteness of Cantor's enumeration of the rational numbers14joes
8 Nov 24   i i i        i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Moebius
8 Nov 24   i i i        i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers6Moebius
9 Nov 24   i i i        i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5WM
9 Nov 24   i i i        i  i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers4Chris M. Thomasson
9 Nov 24   i i i        i  i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers3Moebius
10 Nov 24   i i i        i  i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers2WM
10 Nov 24   i i i        i  i     `- Re: Incompleteness of Cantor's enumeration of the rational numbers1Chris M. Thomasson
9 Nov 24   i i i        i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers6WM
26 Dec 24   i i i        i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers5Chris M. Thomasson
26 Dec 24   i i i        i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers4Moebius
27 Dec 24   i i i        i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers3Chris M. Thomasson
27 Dec 24   i i i        i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
28 Dec 24   i i i        i       `- Re: Incompleteness of Cantor's enumeration of the rational numbers1Chris M. Thomasson
8 Nov 24   i i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (doubling-spaces)2Ross Finlayson
8 Nov 24   i i i        i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (doubling-spaces)1Ross Finlayson
8 Nov 24   i i i        `* Re: Incompleteness of Cantor's enumeration of the rational numbers429Jim Burns
9 Nov 24   i i i         `* Re: Incompleteness of Cantor's enumeration of the rational numbers428WM
10 Nov 24   i i i          `* Re: Incompleteness of Cantor's enumeration of the rational numbers427Jim Burns
10 Nov 24   i i i           `* Re: Incompleteness of Cantor's enumeration of the rational numbers426WM
10 Nov 24   i i i            +- Re: Incompleteness of Cantor's enumeration of the rational numbers (exponential)1Ross Finlayson
10 Nov 24   i i i            +* Re: Incompleteness of Cantor's enumeration of the rational numbers388Jim Burns
11 Nov 24   i i i            i`* Re: Incompleteness of Cantor's enumeration of the rational numbers387WM
11 Nov 24   i i i            i `* Re: Incompleteness of Cantor's enumeration of the rational numbers386Jim Burns
11 Nov 24   i i i            i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers385WM
11 Nov 24   i i i            i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers5FromTheRafters
12 Nov 24   i i i            i   i`* Re: Incompleteness of Cantor's enumeration of the rational numbers4WM
12 Nov 24   i i i            i   i +- Re: Incompleteness of Cantor's enumeration of the rational numbers1FromTheRafters
12 Nov 24   i i i            i   i `* Re: Incompleteness of Cantor's enumeration of the rational numbers2joes
12 Nov 24   i i i            i   i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
12 Nov 24   i i i            i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
12 Nov 24   i i i            i   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
12 Nov 24   i i i            i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers377Jim Burns
12 Nov 24   i i i            i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers376WM
12 Nov 24   i i i            i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers375Jim Burns
12 Nov 24   i i i            i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers374WM
13 Nov 24   i i i            i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
13 Nov 24   i i i            i       i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
13 Nov 24   i i i            i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers371Jim Burns
13 Nov 24   i i i            i        `* Re: Incompleteness of Cantor's enumeration of the rational numbers370WM
13 Nov 24   i i i            i         `* Re: Incompleteness of Cantor's enumeration of the rational numbers369Jim Burns
13 Nov 24   i i i            i          `* Re: Incompleteness of Cantor's enumeration of the rational numbers368WM
14 Nov 24   i i i            i           `* Re: Incompleteness of Cantor's enumeration of the rational numbers367Jim Burns
14 Nov 24   i i i            i            +* Re: Incompleteness of Cantor's enumeration of the rational numbers6FromTheRafters
14 Nov 24   i i i            i            i`* Re: Incompleteness of Cantor's enumeration of the rational numbers5Jim Burns
14 Nov 24   i i i            i            i +* Re: Incompleteness of Cantor's enumeration of the rational numbers3Ross Finlayson
15 Nov 24   i i i            i            i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (research)2Ross Finlayson
15 Nov 24   i i i            i            i i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (research)1Ross Finlayson
14 Nov 24   i i i            i            i `- Re: Incompleteness of Cantor's enumeration of the rational numbers1FromTheRafters
14 Nov 24   i i i            i            `* Re: Incompleteness of Cantor's enumeration of the rational numbers360WM
14 Nov 24   i i i            i             +* Re: Incompleteness of Cantor's enumeration of the rational numbers290Jim Burns
15 Nov 24   i i i            i             i`* Re: Incompleteness of Cantor's enumeration of the rational numbers289WM
15 Nov 24   i i i            i             i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2joes
15 Nov 24   i i i            i             i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
15 Nov 24   i i i            i             i `* Re: Incompleteness of Cantor's enumeration of the rational numbers286Jim Burns
15 Nov 24   i i i            i             i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers285WM
15 Nov 24   i i i            i             i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers284Chris M. Thomasson
16 Nov 24   i i i            i             i    +- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers279Moebius
16 Nov 24   i i i            i             i    i+- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    i+* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
16 Nov 24   i i i            i             i    ii`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
16 Nov 24   i i i            i             i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers275Chris M. Thomasson
16 Nov 24   i i i            i             i    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers274Chris M. Thomasson
16 Nov 24   i i i            i             i    i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Chris M. Thomasson
16 Nov 24   i i i            i             i    i  i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers13FromTheRafters
16 Nov 24   i i i            i             i    i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers12Chris M. Thomasson
16 Nov 24   i i i            i             i    i  i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
16 Nov 24   i i i            i             i    i  i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    i  i +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Moebius
17 Nov 24   i i i            i             i    i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers2FromTheRafters
16 Nov 24   i i i            i             i    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers258Moebius
16 Nov 24   i i i            i             i    +- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
14 Nov 24   i i i            i             `* Re: Incompleteness of Cantor's enumeration of the rational numbers69Jim Burns
10 Nov 24   i i i            `* Re: Incompleteness of Cantor's enumeration of the rational numbers36Chris M. Thomasson
6 Nov 24   i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (opinions)2Ross Finlayson
6 Nov 24   i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5WM
4 Nov 24   `* Re: Incompleteness of Cantor's enumeration of the rational numbers21Chris M. Thomasson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal