Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-standard)

Liste des GroupesRevenir à s math 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-standard)
De : ross.a.finlayson (at) *nospam* gmail.com (Ross Finlayson)
Groupes : sci.math
Date : 21. Nov 2024, 23:32:34
Autres entêtes
Message-ID : <-Yedne6ef71nKaL6nZ2dnZfqn_qdnZ2d@giganews.com>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
User-Agent : Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Thunderbird/38.6.0
On 11/21/2024 01:19 PM, Ross Finlayson wrote:
On 11/21/2024 01:10 PM, Ross Finlayson wrote:
On 11/21/2024 12:28 PM, Jim Burns wrote:
On 11/21/2024 2:46 PM, Ross Finlayson wrote:
On 11/21/2024 09:57 AM, Jim Burns wrote:
>
[...]
>
(the existence of a choice function,
i.e. a bijection between any set and some ordinal)
>
A well.ordering of a set is
a bijection between that set and an ordinal.
>
A choice function is a function 'choice',
  typically not a bijective function,
from a collection of non.empty sets S
to their elements, such that
for each set S, choice(S) ∈ S
>
∀Collection:
∃choice: Collection\{∅} -> ⋃Collection:
  ∀S ∈ Collection\{∅}: choice(S) ∈ S
>
Yeah, Well-Ordering and Choice (the existence of
a choice function, i.e. a bijection between any
set and some ordinal) are same.
>
Well.Ordering and Choice are inter.provable.
>
Countable-choice is weak and trivial.
>
Because we prefer our assumptions weak and trivial,
that's a good thing.
>
Countable.choice is sufficient to prove that
Well.Ordering and Choice are inter.provable.
Proving they are inter.provable with
weak and trivial assumptions is a good thing.
>
>
>
https://www.youtube.com/watch?v=wmuxeHqF-Vw
>
Lecture64||week8||Physico-Mathematical Foundations of the Dynamics of
Nonlinear Processes||by Harsh
>
Guy mentions frequency-doubling, a mathematical feature
after continuum mechanics, which cannot be a thing for
those who take the easy way out that shoves itself off.
>
>
Here it's related to doubling- and halving-spaces, and
measures, real things or rather about real analytical character,
and about models of continuous domains and Vitali and
Hausdorff, great geometers.
>
So anyways one thing about that is line-reals and their
doubling-space with regards to taking their integral
and that it doubles itself up, the iota-values that
ran(EF), integrating EF, integrates and equals one.
>
Then these are well-ordered, these real-valued members
of a continuous domain.
>
Yet, you'll never find one anywhere else with regards
to the complete-ordered-field, because there can't be
an uncountable subset that relates to an uncountable ordinal
where, any subset of a well-ordering the tuples (set, ordinal)
is also a well-ordering a set the tuples (set, ordinal),
there can't be that with uncountably many in their normal
ordering, because, quite directly each pair of those as
read off from the choice function, which is merely the
first element existing according to the mapping of a set
to an ordinal, each pair would have a distinct rational
between them.
>
So, "well-order the reals" arrives at "or, you know,
aver that it exists yet don't actually give one, ...",
because it would be contradictory either way.
>
Anyways that's come up many times, that "well-order the
reals" never quite works out for retro-thesis hacks
of the quite fully the ordinals and cardinals as sets sort,
then though for example it's built up for line-reals
how a resulting, "set", of them, may be so.
>
>
So anyways, you don't need any infinity at all for
such usual matters of induction you describe as so
simple, you're welcome to keep it that way, yet then
that's a sort of "finite combinatorics" not mathematics,
per se.
>
In Cantor space there are duelling arguments where
according to Borel almost all and according to Combinatorics
almost none, of the members, are a given way, and
then also a third alternative where it's exactly one-half.
>
These are a bit independent, say, either ZF minus Infinity
or ZF with Infinity and may even have that there's always
according to Skolem an extension, and according to Mirimanoff
an extra-ordinary, that Russell's retro-thesis an "ordinary",
well-founded infinity is rejected as not-a-thing, instead
that there are either unbounded fragments or extra-ordinary
extensions, in as regards to three definitions of continuous
domains and three definitions (or, perspectives) of Cantor space.
>
>
Claiming to "make things simple" like "initial ordinal assignment,
a cardinal" or "Dedekind cut, a real", is actually sort of having
conflated separate notions that do not fulfill each other.
>
Yeah, it's trivial that the existence of a choice function
and that a subset of the ordered-pairs the tuples a well-ordering
is also a well-ordering, establish each other.
>
So, well-order the reals.
>
>
>
https://www.youtube.com/watch?v=IldqDZklJCg
>
"Lowenheim Skolem Thereom is Explained By Referential Externalism"
>
>
Here a prototypical continuous domain arrives at a theory
with regards to the heno-theory, what's primary in the
theory, when continua are primary in the theory.
>
>
I'm getting a lot more out of these poor starving university students
than mean median mode Internet trooolls of the usenet sock-puppetry.

Date Sujet#  Auteur
3 Nov 24 * Re: Incompleteness of Cantor's enumeration of the rational numbers505Jim Burns
4 Nov 24 `* Re: Incompleteness of Cantor's enumeration of the rational numbers504WM
4 Nov 24  `* Re: Incompleteness of Cantor's enumeration of the rational numbers503Jim Burns
4 Nov 24   +* Re: Incompleteness of Cantor's enumeration of the rational numbers481WM
5 Nov 24   i`* Re: Incompleteness of Cantor's enumeration of the rational numbers480Jim Burns
5 Nov 24   i +* Re: Incompleteness of Cantor's enumeration of the rational numbers4Jim Burns
5 Nov 24   i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)3Ross Finlayson
5 Nov 24   i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)2Ross Finlayson
5 Nov 24   i i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)1Chris M. Thomasson
6 Nov 24   i +* Re: Incompleteness of Cantor's enumeration of the rational numbers470WM
6 Nov 24   i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers469Jim Burns
6 Nov 24   i i +* Re: Incompleteness of Cantor's enumeration of the rational numbers466WM
6 Nov 24   i i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers465Jim Burns
6 Nov 24   i i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers464WM
6 Nov 24   i i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers463Jim Burns
7 Nov 24   i i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers462WM
7 Nov 24   i i i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Jim Burns
7 Nov 24   i i i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers6WM
7 Nov 24   i i i    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5Jim Burns
7 Nov 24   i i i    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers4WM
7 Nov 24   i i i    i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
7 Nov 24   i i i    i   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
7 Nov 24   i i i    i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers1Chris M. Thomasson
7 Nov 24   i i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers454Jim Burns
7 Nov 24   i i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers453WM
8 Nov 24   i i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers452Jim Burns
8 Nov 24   i i i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers451WM
8 Nov 24   i i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers18Richard Damon
8 Nov 24   i i i        i`* Re: Incompleteness of Cantor's enumeration of the rational numbers17WM
8 Nov 24   i i i        i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Richard Damon
9 Nov 24   i i i        i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
8 Nov 24   i i i        i `* Re: Incompleteness of Cantor's enumeration of the rational numbers14joes
8 Nov 24   i i i        i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Moebius
8 Nov 24   i i i        i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers6Moebius
9 Nov 24   i i i        i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5WM
9 Nov 24   i i i        i  i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers4Chris M. Thomasson
9 Nov 24   i i i        i  i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers3Moebius
10 Nov 24   i i i        i  i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers2WM
10 Nov 24   i i i        i  i     `- Re: Incompleteness of Cantor's enumeration of the rational numbers1Chris M. Thomasson
9 Nov 24   i i i        i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers6WM
26 Dec 24   i i i        i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers5Chris M. Thomasson
26 Dec 24   i i i        i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers4Moebius
27 Dec 24   i i i        i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers3Chris M. Thomasson
27 Dec 24   i i i        i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
28 Dec 24   i i i        i       `- Re: Incompleteness of Cantor's enumeration of the rational numbers1Chris M. Thomasson
8 Nov 24   i i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (doubling-spaces)2Ross Finlayson
8 Nov 24   i i i        i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (doubling-spaces)1Ross Finlayson
8 Nov 24   i i i        `* Re: Incompleteness of Cantor's enumeration of the rational numbers430Jim Burns
9 Nov 24   i i i         `* Re: Incompleteness of Cantor's enumeration of the rational numbers429WM
10 Nov 24   i i i          `* Re: Incompleteness of Cantor's enumeration of the rational numbers428Jim Burns
10 Nov 24   i i i           `* Re: Incompleteness of Cantor's enumeration of the rational numbers427WM
10 Nov 24   i i i            +- Re: Incompleteness of Cantor's enumeration of the rational numbers (exponential)1Ross Finlayson
10 Nov 24   i i i            +* Re: Incompleteness of Cantor's enumeration of the rational numbers389Jim Burns
11 Nov 24   i i i            i`* Re: Incompleteness of Cantor's enumeration of the rational numbers388WM
11 Nov 24   i i i            i `* Re: Incompleteness of Cantor's enumeration of the rational numbers387Jim Burns
11 Nov 24   i i i            i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers386WM
11 Nov 24   i i i            i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers5FromTheRafters
12 Nov 24   i i i            i   i`* Re: Incompleteness of Cantor's enumeration of the rational numbers4WM
12 Nov 24   i i i            i   i +- Re: Incompleteness of Cantor's enumeration of the rational numbers1FromTheRafters
12 Nov 24   i i i            i   i `* Re: Incompleteness of Cantor's enumeration of the rational numbers2joes
12 Nov 24   i i i            i   i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
12 Nov 24   i i i            i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
12 Nov 24   i i i            i   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
12 Nov 24   i i i            i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers378Jim Burns
12 Nov 24   i i i            i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers377WM
12 Nov 24   i i i            i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers376Jim Burns
12 Nov 24   i i i            i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers375WM
13 Nov 24   i i i            i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
13 Nov 24   i i i            i       i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
13 Nov 24   i i i            i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers372Jim Burns
13 Nov 24   i i i            i        `* Re: Incompleteness of Cantor's enumeration of the rational numbers371WM
13 Nov 24   i i i            i         `* Re: Incompleteness of Cantor's enumeration of the rational numbers370Jim Burns
13 Nov 24   i i i            i          `* Re: Incompleteness of Cantor's enumeration of the rational numbers369WM
14 Nov 24   i i i            i           `* Re: Incompleteness of Cantor's enumeration of the rational numbers368Jim Burns
14 Nov 24   i i i            i            +* Re: Incompleteness of Cantor's enumeration of the rational numbers6FromTheRafters
14 Nov 24   i i i            i            i`* Re: Incompleteness of Cantor's enumeration of the rational numbers5Jim Burns
14 Nov 24   i i i            i            i +* Re: Incompleteness of Cantor's enumeration of the rational numbers3Ross Finlayson
15 Nov 24   i i i            i            i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (research)2Ross Finlayson
15 Nov 24   i i i            i            i i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (research)1Ross Finlayson
14 Nov 24   i i i            i            i `- Re: Incompleteness of Cantor's enumeration of the rational numbers1FromTheRafters
14 Nov 24   i i i            i            `* Re: Incompleteness of Cantor's enumeration of the rational numbers361WM
14 Nov 24   i i i            i             +* Re: Incompleteness of Cantor's enumeration of the rational numbers291Jim Burns
15 Nov 24   i i i            i             i`* Re: Incompleteness of Cantor's enumeration of the rational numbers290WM
15 Nov 24   i i i            i             i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2joes
15 Nov 24   i i i            i             i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
15 Nov 24   i i i            i             i `* Re: Incompleteness of Cantor's enumeration of the rational numbers287Jim Burns
15 Nov 24   i i i            i             i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers286WM
15 Nov 24   i i i            i             i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers285Chris M. Thomasson
16 Nov 24   i i i            i             i    +- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers280Moebius
16 Nov 24   i i i            i             i    i+- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    i+* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
16 Nov 24   i i i            i             i    ii`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
16 Nov 24   i i i            i             i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers276Chris M. Thomasson
16 Nov 24   i i i            i             i    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers275Chris M. Thomasson
16 Nov 24   i i i            i             i    i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Chris M. Thomasson
16 Nov 24   i i i            i             i    i  i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers13FromTheRafters
16 Nov 24   i i i            i             i    i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers12Chris M. Thomasson
16 Nov 24   i i i            i             i    i  i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
16 Nov 24   i i i            i             i    i  i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    i  i +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Moebius
17 Nov 24   i i i            i             i    i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers2FromTheRafters
16 Nov 24   i i i            i             i    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers259Moebius
16 Nov 24   i i i            i             i    +- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
14 Nov 24   i i i            i             `* Re: Incompleteness of Cantor's enumeration of the rational numbers69Jim Burns
10 Nov 24   i i i            `* Re: Incompleteness of Cantor's enumeration of the rational numbers36Chris M. Thomasson
6 Nov 24   i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (opinions)2Ross Finlayson
6 Nov 24   i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5WM
4 Nov 24   `* Re: Incompleteness of Cantor's enumeration of the rational numbers21Chris M. Thomasson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal