Sujet : Re: A question for set-theorists
De : dohduhdah (at) *nospam* yahoo.com (sobriquet)
Groupes : sci.mathDate : 22. Nov 2024, 14:48:47
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vhq23v$16jp2$1@dont-email.me>
References : 1 2 3 4 5 6
User-Agent : Mozilla Thunderbird
Op 21/11/2024 om 22:03 schreef joes:
Am Thu, 21 Nov 2024 12:54:22 +0100 schrieb WM:
On 21.11.2024 01:18, joes wrote:
Am Wed, 20 Nov 2024 19:32:38 +0100 schrieb WM:
The density of coloured intervals within the first n intervals is a
sequence converging to zero. Every positive eps is undercut. The limit
cannot be 1.
Formally: lim n->oo n/(2^n) = 0
But you don't believe it?
I don't believe in falsehoods. How do you derive the above? Both the
denominator and numerator diverge. The expression oo/oo is undefined.
lim n->oo n/(2^n) = lim n->oo 1/(2^(n-(ln(n)/ln(2)))) = 0
lim n->oo n/(n^3) = lim n->oo 1/n^2 = 0
https://www.desmos.com/calculator/ulookjqjcqhttps://www.wolframalpha.com/input?i=lim+n+to+infinity+1%2F%282%5E%28n-%28ln%28n%29%2Fln%282%29%29%29%29