Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.mathDate : 02. Dec 2024, 08:39:32
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vijo7k$36aql$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
User-Agent : Mozilla Thunderbird
Am 02.12.2024 um 00:11 schrieb Chris M. Thomasson:
On 11/30/2024 3:12 AM, WM wrote:
FINSON(s)
Finite initial segment[s]: F(n) = {1, 2, 3, ..., n} (n e IN)
You see it's a DEFINITION:
F(n) = {1, 2, 3, ..., n} (n e IN) .
This "means" (implies): F(1) is a FISON (i.e. {1}), F(2) is a FISON (i.e. {1, 2}), F(3) is a FISION (i.e. {1, 2, 3}), and so on (ad infinitum). F(1), F(2), F(3), ... are FISONs.
Finite?
Yeah, finite. For each and eveer n e IN F(n) (i.e. {1, 2, 3, ..., n}) is finite (i.e. a finite set).
Huh? The natural numbers don't stop at n! WTF!!!
No one (except possibly Mückenheim) said they did.
Hint: There are _infinitely many_ finite initial segments (one for each and every natural number n). :-)