Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.mathDate : 03. Dec 2024, 07:10:49
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vim7d9$3s6qb$6@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
User-Agent : Mozilla Thunderbird
Am 03.12.2024 um 07:01 schrieb Chris M. Thomasson:
Sometimes I like to think of the set of all natural numbers as an n-ary tree, binary here, wrt zero as a main root, so to speak:
0
/ \
/ \
/ \
/ \
1 2
/ \ / \
/ \ / \
3 4 5 6
.........................
On and on. A lot of math can be applied to it.
Yeah, Trees are important and interesting structures. :-P
.
.
.
Hint: In the context of set theory we usualy consider IN = {0, 1, 2, 3, ...}. (Simplifies a lot.)
Then the natural numbers just "specify" the "sizes" of finite sets.
card({}) = 0
card({0}) = card({1}) = card({2}) = ... = 1
card({0, 1}) = card({0, 2}) = card({1, 2}) = ... = 2
.
.
.