Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.mathDate : 03. Dec 2024, 07:13:20
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vim7i0$3s6qb$7@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
User-Agent : Mozilla Thunderbird
Am 03.12.2024 um 06:34 schrieb Chris M. Thomasson:
What about {1, 2, 3, ..., n}, where n is taken to infinity? No limit?
It's slightly complicated. :-P
If we explicitly refer to sets, say, the sets S_1, S_2, S_3, ...
We may call the sequence (S_1, S_2, S_3, ...) a "set sequence".
Moreover we may define a certain limit (for such sequences) called "set limit".
Then the following can be shown:
lim_(n->oo) {1, 2, 3, ..., n} = {1, 2, 3, ...} .
Or, using defined symbols:
lim_(n->oo) F(n) = IN .
[ The sequence here is (F(1), F(2), F(3), ...). Its limit IN. ]
On the other hand:
lim_(n->oo) {n, n+1, n+2, ...} = {} .
Hope this helps. :-P
.
.
.