Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : noreply (at) *nospam* example.org (joes)
Groupes : sci.mathDate : 04. Dec 2024, 16:33:29
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <6aa872f4a68fc2f9c14fbe61f446ca0fa00f1745@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Wed, 04 Dec 2024 10:00:08 +0100 schrieb WM:
On 03.12.2024 21:34, Jim Burns wrote:
On 12/3/2024 8:02 AM, WM wrote:
E(1)∩E(2)∩...∩E(n) = E(n).
Sequences which are identical in every term have identical limits.
An empty intersection does not require an empty end.segment.
A* set of non-empty endsegments has a non-empty intersection. The reason
is inclusion-monotony.
*finite
-- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:It is not guaranteed that n+1 exists for every n.