Re: Incompleteness of Cantor's enumeration of the rational numbers (not extra-ordinary, fragments)

Liste des GroupesRevenir à s math 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (not extra-ordinary, fragments)
De : ross.a.finlayson (at) *nospam* gmail.com (Ross Finlayson)
Groupes : sci.math
Date : 10. Dec 2024, 02:37:31
Autres entêtes
Message-ID : <ej-dnXJc6-jhBsr6nZ2dnZfqnPUAAAAA@giganews.com>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
User-Agent : Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Thunderbird/38.6.0
On 12/09/2024 05:36 PM, Ross Finlayson wrote:
On 12/07/2024 11:59 AM, Jim Burns wrote:
On 12/7/2024 6:09 AM, WM wrote:
On 06.12.2024 19:17, Jim Burns wrote:
On 12/6/2024 3:19 AM, WM wrote:
On 05.12.2024 23:20, Jim Burns wrote:
>
⎜ With {} NOT as an end.segment,
>
all endsegments hold content.
>
But no common.to.all finite.cardinals.
>
Show two endsegments which
do not hold common content.
>
I will, after you
show me a more.than.finitely.many two.
>
⎜ there STILL are
⎜ more.than.finite.many end.segments,
>
Not actually infinitely many however.
>
More.than.finitely.many are enough to
break the rules we devise for finitely.many.
>
More than finitely many are finitely many,
>
You (WM) define it that way,
which turns your arguments into gibberish.
>
Each finite.cardinality
cannot be more.than.finitely.many
>
⎛ 1 is.less.than 2, and 2 is finite.
⎜ 1 cannot be more.than.finitely.many.

⎜ 2 is.less.than 3, and 3 is finite.
⎜ 2 cannot be more.than.finitely.many.

⎜ 3 is.less.than 4, and 4 is finite.
⎜ 3 cannot be more.than.finitely.many.

⎜ etc.

⎜ If n is a finite.cardinal, then
⎜ n is.less.than n+1, and n+1 is finite.
⎝ n cannot be more.than.finitely.many.
>
More than finitely many are finitely many,
unless they are actually infinitely many.
Therefore they are no enough.
>
Call it 'potential'.
Put whipped cream on top.
Put sprinkles on the whipped cream.
>
None of that changes that
each finite.cardinal is followed by
a finite.cardinal,
which breaks the two.ended.subset rule,
which allows the more.than.any.finite set with Bob
to fit in a proper Bob.free subset.
>
For each finite.cardinal,
up.to.that.cardinal are finitely.many.
A rule for finitely.many holds.
>
All.the.finite.cardinals are more.than.finitely.many.
A rule for more.than.finitely.many holds.
>
All the fite cardinals are actually infinitely many.
>
Put whipped cream on top.
Put sprinkles on the whipped cream.
>
That is impossible as long as
an upper bound rests in the contentents of endsegments.
>
A set of finite.cardinals
with a finite.cardinal upper.bound
is finite.
>
A set of finite cardinals
without a finite.cardinal upper.bound
breaks the two.ended.subset for finite sets,
and may well break other rules for
other bounded.by.a.finite sets.
>
If all endsegments have content,
then not all natnumbers are indices,
>
That seems to be based on the idea that
no finite.cardinal is both index and content.
>
By an unfortunate definition (made by myself)
there is always one cardinal content and index:
E(2) = {2, 3, 4, ...}.
But that is not really a problem.
>
Thank you.
That simplifies the expression of my point.
>
Considering all non.empty end.segments of
all finite.cardinals:
>
Each finite.cardinal indexes
one end.segment.
>
Each end.segment is indexed by
one finite.cardinal.
>
Each finite cardinal is content of
finitely.many end.segments,
fewer than all
more.than.any.finite end.segments.
>
Each end.segment has as content
more.than.finitely.many finite.cardinals,
each finite.cardinal of which
is in fewer.than.all end.segments.
>
Elsewhere, considering one set, that's true.
No element is both
index(minimum) and content(non.minimum).
>
However,
here, we're considering all the end segments.
Each content is index in a later set.
Each non.zero index is content in an earlier set.
>
"All at once" is
the seductive attempt of tricksters.
>
Being.true is not an activity.
>
A claim which is true of
each of more.than.any.finite
is true all.at.once of
each of more.than.any.finite.
>
All that happens in a sequence
can be investigated at every desired step.
>
At each step,
investigating each up.to.that.step is not
investigating each step.
>
Our sets do not change.
>
Each content is index in a later set.
>
Only if all content is lost.
>
The intersection of
more.than.finitely.many
more.than.finite end.segments of
the finite.cardinals
holds only common elements,
and there are no common elements.
It is the empty set.
>
----
∀j,k ∈ ⟦0,ℵ₀⦆:  j+k ∈ ⟦0,ℵ₀⦆
Addition is closed
in the finite.cardinals.
>
∀j ∈ ⟦0,ℵ₀⦆:
|⟦0,ℵ₀⦆| ≥ |⟦0,j⟧| = j+1 > j
iow
|⟦0,ℵ₀⦆| >ᵉᵃᶜʰ ⟦0,ℵ₀⦆
The set of finite.cardinals holds
more.than.any.finite.cardinal.many.
>
|{⟦i,ℵ₀⦆:i∈⟦0,ℵ₀⦆}| = |⟦0,ℵ₀⦆|
thus
|{⟦i,ℵ₀⦆:i∈⟦0,ℵ₀⦆}| >ᵉᵃᶜʰ ⟦0,ℵ₀⦆
The set of end.segments holds
more.than.any.finite.cardinal.many.
>
∀j,k ∈ ⟦0,ℵ₀⦆:
|⟦k,ℵ₀⦆| ≥ |⟦k,k+j⟧| = j+1 > j
iow
|⟦k,ℵ₀⦆| >ᵉᵃᶜʰ ⟦0,ℵ₀⦆
Each end.segment of finite.cardinals holds
more.than.any.finite.many.
>
∀j,k ∈ ⟦0,ℵ₀⦆:
k ∈ ⟦j,ℵ₀⦆  ⇔  j ≤ k
>
∀k ∈ ⟦0,ℵ₀⦆:
∃j ∈ ⟦0,ℵ₀⦆:
¬(j ≤ k) ∧ ¬(k ∈ ⟦j,ℵ₀⦆)
iow
∀k ∈ ⟦0,ℵ₀⦆:
k ∉ ⋂{⟦i,ℵ₀⦆:i∈⟦0,ℵ₀⦆}
iow
⋂{⟦i,ℵ₀⦆:i∈⟦0,ℵ₀⦆} = {}
Their intersection is empty.
>
⎛ Addition is closed in the finite.cardinals.

⎜⎛ The set of finite.cardinals
⎜⎜ The set of end.segments
⎜⎝ Each end.segment
⎜ holds more.than.any.finite.cardinal.many.

⎜ The set of common finite.cardinals
⎜ in more.than.any.finite.many end.segments
⎝ is empty.
>
Round up the usual suspects
and label them 'definable'.
>
∀k ∈ ℕ : E(k+1) = E(k) \ {k}
cannot come down to the empty set
>
It doesn't _come down to_ the empty set. At all.
>
ℵ₀ is not an excessively.large.but.finite.cardinal.
ℵ₀ is a larger.than.any.finite.cardinal.cardinal.
>
∀k ∈ ℕ : E(k+1) = E(k) \ {k}
cannot come down to the empty set
in definable numbers.
No other way however is accessible.
>
That explains why
"Chuck Norris counted to infinity. Twice!"
is a joke. It is an impossible brag.
>
Excessively.large.but.finite is countable.to, in principle.
Larger.than.any.finite is not countable.to, not even darkly.
<rimshot/>
>
>
>
If you're not going to be addressing the extra-ordinary
proper, then it seems what would be polite would be
to change the subject line to better reflect you
stop-short straw-man soft-ball sock-bot slush-mop.
>
>
Quit wiping with the dirty rag

Date Sujet#  Auteur
27 Nov 24 * Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)388WM
27 Nov 24 +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
27 Nov 24 i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
28 Nov 24 `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)385Jim Burns
28 Nov 24  +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)383WM
28 Nov 24  i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)375joes
28 Nov 24  ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)374WM
28 Nov 24  ii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4joes
28 Nov 24  ii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
28 Nov 24  ii i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
28 Nov 24  ii i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
28 Nov 24  ii `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)369FromTheRafters
28 Nov 24  ii  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)368WM
29 Nov 24  ii   +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
29 Nov 24  ii   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
29 Nov 24  ii   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)365FromTheRafters
29 Nov 24  ii    +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)363WM
29 Nov 24  ii    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)362FromTheRafters
29 Nov 24  ii    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)361WM
29 Nov 24  ii    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)360FromTheRafters
30 Nov 24  ii    i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)359WM
30 Nov 24  ii    i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)358FromTheRafters
30 Nov 24  ii    i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)357WM
30 Nov 24  ii    i      +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)10FromTheRafters
30 Nov 24  ii    i      i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
30 Nov 24  ii    i      ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6joes
30 Nov 24  ii    i      ii `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
30 Nov 24  ii    i      ii  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4joes
30 Nov 24  ii    i      ii   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
1 Dec 24  ii    i      ii    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
1 Dec 24  ii    i      ii     `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
30 Nov 24  ii    i      i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary, infinite-middle)2Ross Finlayson
2 Dec 24  ii    i      i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary, infinite-middle)1Chris M. Thomasson
2 Dec 24  ii    i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)346Chris M. Thomasson
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)90Moebius
3 Dec 24  ii    i       i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)89Chris M. Thomasson
3 Dec 24  ii    i       i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)84Moebius
3 Dec 24  ii    i       i i+- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)82Chris M. Thomasson
3 Dec 24  ii    i       i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)81Moebius
3 Dec 24  ii    i       i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)80Chris M. Thomasson
3 Dec 24  ii    i       i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)79Chris M. Thomasson
3 Dec 24  ii    i       i i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)17Moebius
3 Dec 24  ii    i       i i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)16Chris M. Thomasson
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Chris M. Thomasson
3 Dec 24  ii    i       i i    i i+- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)9Chris M. Thomasson
3 Dec 24  ii    i       i i    i i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4Moebius
3 Dec 24  ii    i       i i    i ii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Moebius
3 Dec 24  ii    i       i i    i ii i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i ii `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)61Ben Bacarisse
3 Dec 24  ii    i       i i     +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
3 Dec 24  ii    i       i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)59Chris M. Thomasson
4 Dec 24  ii    i       i i      +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)55Moebius
4 Dec 24  ii    i       i i      i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)54Moebius
4 Dec 24  ii    i       i i      i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)52Chris M. Thomasson
4 Dec 24  ii    i       i i      i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)51Moebius
4 Dec 24  ii    i       i i      i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)50Moebius
4 Dec 24  ii    i       i i      i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)49FromTheRafters
4 Dec 24  ii    i       i i      i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)48Ben Bacarisse
4 Dec 24  ii    i       i i      i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)47Moebius
4 Dec 24  ii    i       i i      i i     +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1FromTheRafters
4 Dec 24  ii    i       i i      i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)45Ben Bacarisse
4 Dec 24  ii    i       i i      i i      +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1FromTheRafters
4 Dec 24  ii    i       i i      i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)43Chris M. Thomasson
4 Dec 24  ii    i       i i      i i       +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ben Bacarisse
5 Dec 24  ii    i       i i      i i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)41WM
5 Dec 24  ii    i       i i      i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)19joes
5 Dec 24  ii    i       i i      i i        i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)18WM
5 Dec 24  ii    i       i i      i i        i +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
5 Dec 24  ii    i       i i      i i        i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8joes
5 Dec 24  ii    i       i i      i i        i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
6 Dec 24  ii    i       i i      i i        i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6joes
7 Dec 24  ii    i       i i      i i        i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
7 Dec 24  ii    i       i i      i i        i i   +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1joes
7 Dec 24  ii    i       i i      i i        i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Richard Damon
7 Dec 24  ii    i       i i      i i        i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
8 Dec 24  ii    i       i i      i i        i i     `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
5 Dec 24  ii    i       i i      i i        i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8FromTheRafters
5 Dec 24  ii    i       i i      i i        i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
5 Dec 24  ii    i       i i      i i        i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4FromTheRafters
5 Dec 24  ii    i       i i      i i        i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
6 Dec 24  ii    i       i i      i i        i  i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2FromTheRafters
6 Dec 24  ii    i       i i      i i        i  i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
6 Dec 24  ii    i       i i      i i        i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
5 Dec 24  ii    i       i i      i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)20Richard Damon
5 Dec 24  ii    i       i i      i i        i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)18WM
6 Dec 24  ii    i       i i      i i        ii+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8Richard Damon
6 Dec 24  ii    i       i i      i i        iii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
6 Dec 24  ii    i       i i      i i        iii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5joes
6 Dec 24  ii    i       i i      i i        iii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4WM
6 Dec 24  ii    i       i i      i i        iii `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
6 Dec 24  ii    i       i i      i i        ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)9Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
4 Dec 24  ii    i       i i      i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
4 Dec 24  ii    i       i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Ben Bacarisse
3 Dec 24  ii    i       i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4Jim Burns
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
2 Dec 24  ii    i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)251FromTheRafters
29 Nov 24  ii    `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ross Finlayson
29 Nov 24  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7Jim Burns
28 Nov 24  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ross Finlayson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal