Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)

Liste des GroupesRevenir à s math 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.math
Date : 17. Dec 2024, 23:01:36
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vjssc0$1tr00$3@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
User-Agent : Mozilla Thunderbird
On 17.12.2024 18:09, joes wrote:
Am Tue, 17 Dec 2024 11:30:46 +0100 schrieb WM:

An unbounded number can be subtracted individually.
As long as it is finite.
 
However, if all are
subtracted individually, then a last one is subtracted. That cannot
happen.
Whatever do you mean by that? There is no last to inf.many. „All” are
not finite.
But all can be subtracted collectively: |ℕ \ {1, 2, 3, ...}| = 0.
Regards, WM

Date Sujet#  Auteur
17 Dec 24 * Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
17 Dec 24 `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal