Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 19. Dec 2024, 20:18:13
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <482582f5-0a90-4634-928a-059b1eadc8a4@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla Thunderbird
On 12/19/2024 1:29 PM, Jim Burns wrote:
On 12/19/2024 9:50 AM, WM wrote:
The empty term
has lost all natnumbers one by one.
>
One.by.one and (darkᵂᴹ or visibleᵂᴹ) endlessly.
>
For each set smaller.than fuller.by.one sets,
fuller.by.ONE sets are smaller.than
fuller.by.TWO sets.
For b ∉ A ∌ c ≠ b
#A < #(A∪{b}) ⇒ #(A∪{b}) < #(A∪{b,c})
⎛ Assume otherwise.
⎜ Assume #A < #(A∪{b}) ≥ #(A∪{b,c})
⎜
⎜ #(A∪{b}) ≥ #(A∪{b,c})
⎜ one.to.one g: A∪{b,c} ⇉ A∪{b}
⎜ Define
⎜⎛ f(g⁻¹(b)) = g(c)
⎜⎜ otherwise f(x) = g(x)
⎜⎝ one.to.one f: A∪{b} ⇉ A
⎜ #A ≥ #(A∪{b})
⎜
⎜ However,
⎜ #A < #(A∪{b})
⎝ Contradiction.
Therefore, for b ∉ A ∌ c ≠ b
#A < #(A∪{b}) ⇒ #(A∪{b}) < #(A∪{b,c})
For each set smaller.than fuller.by.one sets,
fuller.by.ONE sets are smaller.than
fuller.by.TWO sets.
No set is largest among
the sets smaller.than fuller.by.one sets.