Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)

Liste des GroupesRevenir à s math 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : ross.a.finlayson (at) *nospam* gmail.com (Ross Finlayson)
Groupes : sci.math
Date : 22. Dec 2024, 00:29:14
Autres entêtes
Message-ID : <1R-dnTR1L5PL0vr6nZ2dnZfqn_adnZ2d@giganews.com>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Thunderbird/38.6.0
On 12/21/2024 11:32 AM, Jim Burns wrote:
On 12/21/2024 6:34 AM, WM wrote:
On 20.12.2024 19:48, Jim Burns wrote:
On 12/19/2024 4:37 PM, WM wrote:
>
That means all numbers are lost by loss of
one number per term.
>
That implies finite endsegments.
>
Q. What does 'finite' mean?
>
Consider end.segments of the finite cardinals.
>
Q. What does 'finite' mean,
'finite', whether darkᵂᴹ or visibleᵂᴹ?
>
Here is a new and better definition of endsegments
>
E(n) = {n+1, n+2, n+3, ...} with E(0) = ℕ.
>
∀n ∈ ℕ : E(n+1) = E(n) \ {n+1}
means that the sequence of endsegments can decrease only by one
natnumber per step.
>
E(n+1) is larger.than each of
the sets for which there are smaller.by.one sets.
E(n+1) isn't any of
the sets for which there are smaller.by.one sets.
>
E(n+1) isn't smaller.by.one than E(n).
E(n+1) is emptier.by.one than E(n)
>
Therefore the sequence of endsegments
cannot become empty
>
Yes, because
the sequence of end.segments
can become emptier.one.by.one, but
it cannot become smaller.one.by.one.
>
(i.e., not all natnumbers can be applied as indices)
>
Each finite.cardinal can be applied,
which makes the sequence emptier.by.one
but does not make the sequence smaller.by.one.
>
unless the empty endsegment is reached,
>
Each end.segment is emptier.by.one.
No end.segment is smaller.than the first end.segment ℕ
The empty end.segment is not reached.
>
No finite.cardinal is in common with
all infinitely.many
infinite.end.segments of
finite.cardinals.
>
Nothing other.than a finite.cardinal is in
any end.segment of the finite.cardinals,
or in their intersection.
>
The intersection of all infinitely.many
infinite end.segments of finite.cardinals
is not an end.segment
but is empty.
>
Q. What does 'finite' mean?
>
unless the empty endsegment is reached,
>
The empty end.segment, not.existing, is not.reached.
>
The intersection.of.finitely.many is not.empty.
The intersection.of.all is empty.
>
and
before finite endsegments,
endsegments containing only 1, 2, 3, or n ∈ ℕ numbers,
have been passed.
>
⎛ Assume end.segment E(n) of the finite.cardinals
⎜ holds only finite.cardinal.k.many finite.cardinals.

⎜ k.sized E(n) holds
⎜ kᵗʰ.smallest, 1ˢᵗ.largest finite.cardinal E(n)[k]

⎜ If a finite.cardinal larger.than E(n)[k] exists,
⎜ it would also be in end.segment E(n) and
⎜ larger.than 1ˢᵗ.largest E(n)[k]: a contradiction.

⎜ Thus,
⎜ a finite.cardinal larger.than E(n)[k] doesn't exist.

⎜ However,
⎜⎛ for each finite.cardinal j,
⎜⎝ larger.than.j finite.cardinal j+1 exists.

⎜ Larger.than.E(n)[k] finite.cardinal E(n)[k]+1 exists.
⎝ Contradiction.
>
Therefore,
end.segment E(n) of the finite.cardinals does not hold
only finite.cardinal.many finite.cardinals.
>
There are no finite end.segments of the finite.cardinals.
>
Q. What does 'finite' mean?
>
These however, if existing at all, cannot be seen.
They are dark.
>
Darknessᵂᴹ and visibilityᵂᴹ don't change any of this.
There are no finite end.segments of the finite.cardinals.
>
We know it by the method of
assembling finite sequences of claims (proofs),
each claim of which is true.or.not.first.false (valid),
and holding those claims.we.know (theorems),
because
a finite sequence of claims,
each claim of which true.or.not.first.false,
holds only true claims.
>
Some claims (definitions)
we know are true because
we know how we have defined things.
>
Some claims (valid inferences)
we know are not.first.false because
we can inspect the finite sequence of claims.
>
None of _the claims_ are darkᵂᴹ,
whatever the status of _what the claims are about_
>
Darknessᵂᴹ or visibilityᵂᴹ of finite.cardinals
don't change _the claims_
>
That means all numbers are lost by loss of
one number per term.
>
That implies finite endsegments.
>
No.
Yes, each number is lost by loss of
one number per term.
However,
each end.segment is not finite.
>
>
Then the last endsegment is empty.
>
There is no last end.segment of the finite.cardinals.
⎛ For each finite.cardinal j,
⎝ larger.than.j finite.cardinal j+1 exists.
contradicts a last end.segment.
>
>
Well, anybody can just build "infinite-middle",
is what it is.
It's agreeable that's very well painting oneself
into the corner, quite so.
Yet, here there's the yin-yang ad-infinitum since
at least a a month or so ago, just going to show
that not all inductive accounts, even credible
ones like infinite induction, are true, in
infinite completions.
So, it's kind of like Richard keeps saying,
"there are true things about these infinite
things that a finite logic fails to find",
then one can always point to Goedel or similarly
about the incompleteness of ordinary theories,
figuring to mention something about the extra-ordinary
since most of these posts about "the extra-ordinary"
have nothing at all to say about it.
That deduction readily arrives at, ....

Date Sujet#  Auteur
27 Nov 24 * Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)390WM
27 Nov 24 +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
27 Nov 24 i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
28 Nov 24 `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)387Jim Burns
28 Nov 24  +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)385WM
28 Nov 24  i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)377joes
28 Nov 24  ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)376WM
28 Nov 24  ii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4joes
28 Nov 24  ii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
28 Nov 24  ii i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
28 Nov 24  ii i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
28 Nov 24  ii `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)371FromTheRafters
28 Nov 24  ii  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)370WM
29 Nov 24  ii   +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
29 Nov 24  ii   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
29 Nov 24  ii   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)367FromTheRafters
29 Nov 24  ii    +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)365WM
29 Nov 24  ii    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)364FromTheRafters
29 Nov 24  ii    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)363WM
29 Nov 24  ii    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)362FromTheRafters
30 Nov 24  ii    i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)361WM
30 Nov 24  ii    i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)360FromTheRafters
30 Nov 24  ii    i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)359WM
30 Nov 24  ii    i      +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)10FromTheRafters
30 Nov 24  ii    i      i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
30 Nov 24  ii    i      ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6joes
30 Nov 24  ii    i      ii `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
30 Nov 24  ii    i      ii  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4joes
30 Nov 24  ii    i      ii   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
1 Dec 24  ii    i      ii    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
1 Dec 24  ii    i      ii     `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
30 Nov 24  ii    i      i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary, infinite-middle)2Ross Finlayson
2 Dec 24  ii    i      i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary, infinite-middle)1Chris M. Thomasson
2 Dec 24  ii    i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)348Chris M. Thomasson
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)90Moebius
3 Dec 24  ii    i       i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)89Chris M. Thomasson
3 Dec 24  ii    i       i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)84Moebius
3 Dec 24  ii    i       i i+- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)82Chris M. Thomasson
3 Dec 24  ii    i       i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)81Moebius
3 Dec 24  ii    i       i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)80Chris M. Thomasson
3 Dec 24  ii    i       i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)79Chris M. Thomasson
3 Dec 24  ii    i       i i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)17Moebius
3 Dec 24  ii    i       i i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)16Chris M. Thomasson
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Chris M. Thomasson
3 Dec 24  ii    i       i i    i i+- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)9Chris M. Thomasson
3 Dec 24  ii    i       i i    i i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4Moebius
3 Dec 24  ii    i       i i    i ii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Moebius
3 Dec 24  ii    i       i i    i ii i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i ii `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)61Ben Bacarisse
3 Dec 24  ii    i       i i     +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
3 Dec 24  ii    i       i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)59Chris M. Thomasson
4 Dec 24  ii    i       i i      +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)55Moebius
4 Dec 24  ii    i       i i      i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)54Moebius
4 Dec 24  ii    i       i i      i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)52Chris M. Thomasson
4 Dec 24  ii    i       i i      i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)51Moebius
4 Dec 24  ii    i       i i      i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)50Moebius
4 Dec 24  ii    i       i i      i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)49FromTheRafters
4 Dec 24  ii    i       i i      i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)48Ben Bacarisse
4 Dec 24  ii    i       i i      i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)47Moebius
4 Dec 24  ii    i       i i      i i     +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1FromTheRafters
4 Dec 24  ii    i       i i      i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)45Ben Bacarisse
4 Dec 24  ii    i       i i      i i      +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1FromTheRafters
4 Dec 24  ii    i       i i      i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)43Chris M. Thomasson
4 Dec 24  ii    i       i i      i i       +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ben Bacarisse
5 Dec 24  ii    i       i i      i i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)41WM
5 Dec 24  ii    i       i i      i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)19joes
5 Dec 24  ii    i       i i      i i        i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)18WM
5 Dec 24  ii    i       i i      i i        i +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
5 Dec 24  ii    i       i i      i i        i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8joes
5 Dec 24  ii    i       i i      i i        i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
6 Dec 24  ii    i       i i      i i        i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6joes
7 Dec 24  ii    i       i i      i i        i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
7 Dec 24  ii    i       i i      i i        i i   +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1joes
7 Dec 24  ii    i       i i      i i        i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Richard Damon
7 Dec 24  ii    i       i i      i i        i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
8 Dec 24  ii    i       i i      i i        i i     `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
5 Dec 24  ii    i       i i      i i        i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8FromTheRafters
5 Dec 24  ii    i       i i      i i        i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
5 Dec 24  ii    i       i i      i i        i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4FromTheRafters
5 Dec 24  ii    i       i i      i i        i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
6 Dec 24  ii    i       i i      i i        i  i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2FromTheRafters
6 Dec 24  ii    i       i i      i i        i  i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
6 Dec 24  ii    i       i i      i i        i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
5 Dec 24  ii    i       i i      i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)20Richard Damon
5 Dec 24  ii    i       i i      i i        i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)18WM
6 Dec 24  ii    i       i i      i i        ii+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8Richard Damon
6 Dec 24  ii    i       i i      i i        iii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
6 Dec 24  ii    i       i i      i i        iii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5joes
6 Dec 24  ii    i       i i      i i        iii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4WM
6 Dec 24  ii    i       i i      i i        iii `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
6 Dec 24  ii    i       i i      i i        ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)9Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
4 Dec 24  ii    i       i i      i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
4 Dec 24  ii    i       i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Ben Bacarisse
3 Dec 24  ii    i       i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4Jim Burns
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
2 Dec 24  ii    i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)253FromTheRafters
29 Nov 24  ii    `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ross Finlayson
29 Nov 24  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7Jim Burns
28 Nov 24  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ross Finlayson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal