Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 03. Jan 2025, 21:56:00
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <53806d5c-f456-4c13-8506-24c0b9ab310e@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla Thunderbird
On 1/3/2025 2:48 PM, WM wrote:
On 03.01.2025 19:46, Jim Burns wrote:
There is no largest finite.ordinal.
>
There is no definable largest finite ordinal.
There is no largest
ordinal smaller.than fuller.by.one ordinals.
The ordinals smaller.than fuller.by.one ordinals
are finiteⁿᵒᵗᐧᵂᴹ.
There is no largest finiteⁿᵒᵗᐧᵂᴹ.ordinal.
----
If set A is smaller.than set B
then A∪{a} ≠ A is smaller.than B∪{b} ≠ B
Thus,
if ⟦0,j⦆ is smaller than ⟦0,j+1⦆
then ⟦0,j⦆∪⦃j⦄ is smaller than ⟦0,j+1⦆∪⦃j+1⦄
⟦0,j+1⦆ = ⟦0,j⦆∪⦃j⦄
⟦0,j+2⦆ = ⟦0,j+1⦆∪⦃j+1⦄
If #⟦0,j⦆ < #⟦0,j+1⦆
then #⟦0,j⦆ < #⟦0,j+1⦆ < #⟦0,j+2⦆
If ⟦0,j⦆ is
smaller.than fuller.by.one (finiteⁿᵒᵗᐧᵂᴹ)
then ⟦0,j⦆ is not.largest
smaller.than fuller.by.one (finiteⁿᵒᵗᐧᵂᴹ).
There is no largest
smaller.than fuller.by.one (finiteⁿᵒᵗᐧᵂᴹ).