Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : noreply (at) *nospam* example.org (joes)
Groupes : sci.mathDate : 04. Jan 2025, 12:05:29
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <0fcb1565ffce749b74285fc2915fdb9a4a70b796@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Sat, 04 Jan 2025 09:42:11 +0100 schrieb WM:
On 1/3/2025 2:48 PM, WM wrote:
On 03.01.2025 19:46, Jim Burns wrote:
All finite.ordinals removed from the set of each and only
finite.ordinals leaves the empty set.
But removing every ordinal that you can define (and all its
predecessors) from ℕ leaves almost all ordinals in ℕ.∀n ∈ ℕ_def: |ℕ \
{1, 2, 3, ..., n}| = ℵo
No. One can „define” infinitely many numbers.
-- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:It is not guaranteed that n+1 exists for every n.