Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : noreply (at) *nospam* example.org (joes)
Groupes : sci.mathDate : 04. Jan 2025, 17:21:23
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <38ef6c64fdd8c00427f6902b3560c158467c6505@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Sat, 04 Jan 2025 09:17:16 +0100 schrieb WM:
On 03.01.2025 21:29, joes wrote:
Am Fri, 03 Jan 2025 20:48:57 +0100 schrieb WM:
But removing every ordinal that you can define (and all its
predecessors) from ℕ leaves almost all ordinals in ℕ.
No, N is exactly the set of those numbers.
∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo contradicts your opinion.
Where is the contradiction? N is not a finite set with a maximum.
-- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:It is not guaranteed that n+1 exists for every n.