Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.mathDate : 05. Jan 2025, 12:14:47
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vldpj7$vlah$7@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
User-Agent : Mozilla Thunderbird
On 04.01.2025 21:38, Chris M. Thomasson wrote:
For me, there are infinitely many natural numbers, period... Do you totally disagree?
No. There are actually infinitely many natural numbers. All can be removed from ℕ, but only collectively
ℕ \ {1, 2, 3, ...} = { }.
It is impossible to remove the numbers individually
∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo.
Therefore the definable numbers are onl a potentially infinite set.
Regards, WM