Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : noreply (at) *nospam* example.org (joes)
Groupes : sci.mathDate : 05. Jan 2025, 19:03:03
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <a8b010b748782966268688a38b58fe1a9b4cc087@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Sun, 05 Jan 2025 12:14:47 +0100 schrieb WM:
On 04.01.2025 21:38, Chris M. Thomasson wrote:
For me, there are infinitely many natural numbers, period... Do you
totally disagree?
No. There are actually infinitely many natural numbers. All can be
removed from ℕ, but only collectively ℕ \ {1, 2, 3, ...} = { }.
It is impossible to remove the numbers individually ∀n ∈ ℕ_def: |ℕ \ {1,
2, 3, ..., n}| = ℵo.
Well yes, the size of N is itself not a natural number. Big surprise.
-- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:It is not guaranteed that n+1 exists for every n.