Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)

Liste des GroupesRevenir à s math 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : ross.a.finlayson (at) *nospam* gmail.com (Ross Finlayson)
Groupes : sci.math
Date : 10. Jan 2025, 03:15:18
Autres entêtes
Message-ID : <wK-dnXK-lPAuHx36nZ2dnZfqnPadnZ2d@giganews.com>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Thunderbird/38.6.0
On 01/06/2025 09:46 PM, Ross Finlayson wrote:
On 01/06/2025 05:36 PM, Ross Finlayson wrote:
On 01/06/2025 02:43 PM, Jim Burns wrote:
On 1/5/2025 1:14 PM, WM wrote:
On 05.01.2025 19:03, joes wrote:
Am Sun, 05 Jan 2025 12:14:47 +0100 schrieb WM:
On 04.01.2025 21:38, Chris M. Thomasson wrote:
>
For me,
there are infinitely many natural numbers, period...
Do you totally disagree?
>
No.
There are actually infinitely many natural numbers.
All can be removed from ℕ, but only collectively
ℕ \ {1, 2, 3, ...} = { }.
It is impossible to remove the numbers individually
∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo.
>
Well yes,
the size of N is itself
not a natural number.
Big surprise.
>
ℕ cannot be covered by FISONs,
neither by many nor by their union.
If ℕ could be covered by FISONs
then one would be sufficient.
>
ℕ is the set of finite.ordinals.
ℕ holds each finite ordinal.
ℕ holds only finite.ordinals.
>
⎛ A FISON is a set of finite.ordinals
⎝ up to that FISON's maximum (finite.ordinal) element.
>
A finite.ordinal is an ordinal
smaller.than fuller.by.one sets.
>
Lemma 1.
⎛ For sets A∪{a} ≠ A and B∪{b} ≠ B
⎜⎛ if A is smaller.than B
⎜⎝ then A∪{a} is smaller.than B∪{b}
⎝ #A < #B  ⇒  #(A∪{a}) < #(B∪{b})
>
Lemma 1
is true for both the darkᵂᴹ and the visibleᵂᴹ.
>
Consider finite.ordinal k.
Finite: ⟦0,k⦆ is smaller.than ⟦0,k⦆∪⦃k⦄
>
A = ⟦0,k⦆
A∪{a} = ⟦0,k⦆∪⦃k⦄
B = ⟦0,k⦆∪⦃k⦄ = ⟦0,k+1⦆
B∪{b} = (⟦0,k⦆∪⦃k⦄)∪⦃k+1⦄ = ⟦0,k+1⦆∪⦃k+1⦄
>
⎛ By lemma 1
⎜ if ⟦0,k⦆ is smaller.than ⟦0,k+1⦆
⎜ then ⟦0,k⦆∪⦃k⦄ is smaller.than ⟦0,k+1⦆∪⦃k+1⦄

⎜ If
⎜ k is in ℕ and
⎜ k is finite and
⎜ ⟦0,k⦆ is smaller.than ⟦0,k⦆∪⦃k⦄
⎜ then
⎜ ⟦0,k+1⦆ is smaller.than ⟦0,k+1⦆∪⦃k+1⦄ and
⎜ k+1 is finite and
⎝ k+1 is in ℕ.
>
k ∈ ℕ  ⇒  k+1 ∈ ℕ
is true for both the darkᵂᴹ and the visibleᵂᴹ.
>
If ℕ could be covered by FISONs
then one would be sufficient.
>
ℕ is the set of finite.ordinals.
>
A FISON is a set of finite.ordinals
up to that FISON's maximum (finite.ordinal) element.
>
If one FISON covered ℕ,
that FISON.cover would equal ℕ,
and the maximum of that FISON.cover
would be the maximum.of.all finite.ordinal.
>
However,
no finite.ordinal k is the maximum.of.all.
k ∈ ℕ  ⇒  k+1 ∈ ℕ
That is true for both the darkᵂᴹ and the visibleᵂᴹ.
>
Contradiction.
No one FISON covers ℕ.
>
ℕ cannot be covered by FISONs,
neither by many nor by their union.
>
No.
>
ℕ is the set of finite ordinals.
>
Each finite.ordinal k is in
at least one FISON: ⟦0,k⟧
>
Each finite.ordinal is in
the union of FISONs
>
The union of FISONs covers
the set ℕ of finite.ordinals
>
But for all we have:
Extension by 100 is insufficient.
>
Correct.
Which is weird, but accurate.
>
The source of that weird result is lemma 1.
⎛ For sets A∪{a} ≠ A and B∪{b} ≠ B
⎜⎛ if A is smaller.than B
⎜⎝ then A∪{a} is smaller.than B∪{b}
⎝ #A < #B  ⇒  #(A∪{a}) < #(B∪{b})
>
It would be great if you (WM) did NOT
find lemma 1 weird,
but it is what it is.
>
>
>
But, if I said it was a waste of time,
wouldn't that be a waste of time?
>
>
The inductive set being covered by
initial segments is an _axiom_ of ZF.
>
There are lesser theories where it's not
so, of course, why they added something
like "Infinity" as an _axiom_, vis-a-vis
the illative or univalent or infinite-union
which is _not_ an axiom, and furthermore
not by itself a theorem.
>
So, ..., I suppose that's part of the
idea of the "Reverse Mathematics" program,
which is about theories with less axioms,
about what's so, and what's not so.
>
Then, of course one can show that according
to pair-wise union is the _un-bounded_, then
as with regards to whether comprehension
brings the Russell Paradox on, on the way
from going from _fragments_ to _extensions_,
that is a simple result in, "set theory".
>
... That it's either not infinite or,
you know, not finite.
>
>
>
>
It's pretty simple,
you've invoked Russell as your ruler,
others don't, and, there's a land
where Russell never rules,
so, what you thought was an
at best and at worst incomplete theory,
has there's one where it's not even so.
>
(... That models of integers are fragments
or extensions is the idea, the extra-ordinary
and the super-cardinal.)
>
Don't get me wrong, it's a great way to
simplify ordinary cardinals.
>
And, there is a _function_ between the
integers and even integers, and half of
the integers are even, yet swapping out
the odds, never completes.
>
There's a limit, of course, though, standardly
you don't say that's ever, reached, say.
>
>
>
Boring, I know, ....
>
>

Date Sujet#  Auteur
27 Nov 24 * Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1047WM
27 Nov 24 +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
27 Nov 24 i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
28 Nov 24 `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1044Jim Burns
28 Nov 24  +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1042WM
28 Nov 24  i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1034joes
28 Nov 24  ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1033WM
28 Nov 24  ii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4joes
28 Nov 24  ii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
28 Nov 24  ii i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
28 Nov 24  ii i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
28 Nov 24  ii `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1028FromTheRafters
28 Nov 24  ii  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1027WM
28 Nov 24  ii   +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
29 Nov 24  ii   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
29 Nov 24  ii   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1024FromTheRafters
29 Nov 24  ii    +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1022WM
29 Nov 24  ii    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1021FromTheRafters
29 Nov 24  ii    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1020WM
29 Nov 24  ii    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1019FromTheRafters
30 Nov 24  ii    i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1018WM
30 Nov 24  ii    i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1017FromTheRafters
30 Nov 24  ii    i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1016WM
30 Nov 24  ii    i      +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)10FromTheRafters
30 Nov 24  ii    i      i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
30 Nov 24  ii    i      ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6joes
30 Nov 24  ii    i      ii `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
30 Nov 24  ii    i      ii  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4joes
30 Nov 24  ii    i      ii   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
1 Dec 24  ii    i      ii    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
1 Dec 24  ii    i      ii     `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
30 Nov 24  ii    i      i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary, infinite-middle)2Ross Finlayson
2 Dec 24  ii    i      i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary, infinite-middle)1Chris M. Thomasson
2 Dec 24  ii    i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1005Chris M. Thomasson
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)90Moebius
3 Dec 24  ii    i       i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)89Chris M. Thomasson
3 Dec 24  ii    i       i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)84Moebius
3 Dec 24  ii    i       i i+- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)82Chris M. Thomasson
3 Dec 24  ii    i       i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)81Moebius
3 Dec 24  ii    i       i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)80Chris M. Thomasson
3 Dec 24  ii    i       i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)79Chris M. Thomasson
3 Dec 24  ii    i       i i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)17Moebius
3 Dec 24  ii    i       i i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)16Chris M. Thomasson
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Chris M. Thomasson
3 Dec 24  ii    i       i i    i i+- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)9Chris M. Thomasson
3 Dec 24  ii    i       i i    i i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4Moebius
3 Dec 24  ii    i       i i    i ii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Moebius
3 Dec 24  ii    i       i i    i ii i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i ii `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)61Ben Bacarisse
3 Dec 24  ii    i       i i     +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
3 Dec 24  ii    i       i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)59Chris M. Thomasson
3 Dec 24  ii    i       i i      +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)55Moebius
3 Dec 24  ii    i       i i      i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)54Moebius
4 Dec 24  ii    i       i i      i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)52Chris M. Thomasson
4 Dec 24  ii    i       i i      i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)51Moebius
4 Dec 24  ii    i       i i      i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)50Moebius
4 Dec 24  ii    i       i i      i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)49FromTheRafters
4 Dec 24  ii    i       i i      i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)48Ben Bacarisse
4 Dec 24  ii    i       i i      i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)47Moebius
4 Dec 24  ii    i       i i      i i     +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1FromTheRafters
4 Dec 24  ii    i       i i      i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)45Ben Bacarisse
4 Dec 24  ii    i       i i      i i      +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1FromTheRafters
4 Dec 24  ii    i       i i      i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)43Chris M. Thomasson
4 Dec 24  ii    i       i i      i i       +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ben Bacarisse
5 Dec 24  ii    i       i i      i i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)41WM
5 Dec 24  ii    i       i i      i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)19joes
5 Dec 24  ii    i       i i      i i        i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)18WM
5 Dec 24  ii    i       i i      i i        i +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
5 Dec 24  ii    i       i i      i i        i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8joes
5 Dec 24  ii    i       i i      i i        i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
6 Dec 24  ii    i       i i      i i        i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6joes
7 Dec 24  ii    i       i i      i i        i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
7 Dec 24  ii    i       i i      i i        i i   +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1joes
7 Dec 24  ii    i       i i      i i        i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Richard Damon
7 Dec 24  ii    i       i i      i i        i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
7 Dec 24  ii    i       i i      i i        i i     `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
5 Dec 24  ii    i       i i      i i        i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8FromTheRafters
5 Dec 24  ii    i       i i      i i        i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
5 Dec 24  ii    i       i i      i i        i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4FromTheRafters
5 Dec 24  ii    i       i i      i i        i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
5 Dec 24  ii    i       i i      i i        i  i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2FromTheRafters
6 Dec 24  ii    i       i i      i i        i  i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
6 Dec 24  ii    i       i i      i i        i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
5 Dec 24  ii    i       i i      i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)20Richard Damon
5 Dec 24  ii    i       i i      i i        i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)18WM
6 Dec 24  ii    i       i i      i i        ii+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8Richard Damon
6 Dec 24  ii    i       i i      i i        iii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
6 Dec 24  ii    i       i i      i i        iii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5joes
6 Dec 24  ii    i       i i      i i        iii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4WM
6 Dec 24  ii    i       i i      i i        iii `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
6 Dec 24  ii    i       i i      i i        ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)9Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
4 Dec 24  ii    i       i i      i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
4 Dec 24  ii    i       i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Ben Bacarisse
3 Dec 24  ii    i       i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4Jim Burns
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
2 Dec 24  ii    i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)910FromTheRafters
29 Nov 24  ii    `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ross Finlayson
29 Nov 24  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7Jim Burns
28 Nov 24  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ross Finlayson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal