Re: Roots of a second degree equation.

Liste des GroupesRevenir à s math 
Sujet : Re: Roots of a second degree equation.
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.math
Date : 22. Jan 2025, 11:34:11
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vmqhj3$v4iq$1@dont-email.me>
References : 1 2
User-Agent : Mozilla Thunderbird
Am 22.01.2025 um 11:28 schrieb Alan Mackenzie:

What exactly do you mean by saying that the imaginary roots (usually
called complex roots by mathematicians) do not exist?  What attribute
does -2 + i possess, or lack, that entitles you to attribute to it the
property of non-existence?  How does -2 + i differ in that respect from
other numbers such as -1 or 42?
 The fact is, there is a vast theory of complex analysis which is
coherent and fascinating.  It is also useful in science and engineering.
Even "worse":
See: https://www.nature.com/articles/s41586-021-04160-4

Date Sujet#  Auteur
22 Jan 25 * Roots of a second degree equation.3Richard Hachel
22 Jan 25 `* Re: Roots of a second degree equation.2Alan Mackenzie
22 Jan 25  `- Re: Roots of a second degree equation.1Moebius

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal